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1. Introduction

We develop formulae for conformal maps f :U/P from unbounded multiply
connected circle domains to canonical unbounded slit domains. A circle domain
U is a domain of connectivity m in the extended complex plane C

� that
contains the point at infinity, and whose m boundary components are circles, Cj,
jZ1,., m. A radial or circular slit domain P is a domain in C

�, N2P with
boundary consisting of m closed segments lying on rays from the origin or m
closed circular arcs lying on circles centred at the origin, respectively. Circle,
radial slit and circular slit domains are three of the classes of canonical domains
in Koebe’s classification of multiply connected domains. There are various
functional relationships between pairs of slit mappings from different canonical
classes (Nehari 1952, Chap. 7), but the circle domains are not related to other
canonical classes in such an elementary fashion. Thus, it is of great interest to be
able to find explicit formulae for mapping the circle domains onto the radial and
the circular slit domains.

We derive our mapping formulae by using the reflection principle to extend the
mapping f beyond U to a globally defined function. Then, complete knowledge of
the zeros and poles of the globally defined function enables one to express f as an
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T. K. DeLillo et al.1720
infinite product. This is a more direct determination of f than the analogous
process in finding the Schwarz–Christoffel mapping formula for general polygonal
domains where the reflection process leads to a determination of the derivative of
the mapping function (DeLillo et al. 2004). The remaining problem of trying to
determine f from an integral of many non-elementary infinite products with
unknown accessory parameters is still not solved in a satisfactory general manner
(DeLillo et al. 2006). Thus, it is quite interesting to see in the present work that
for radial and circular slit mappings, the problem of integrating the derivative of
the desired mapping function is eliminated. Schwarz–Christoffel formulae for
bounded polygonal domains were derived by Crowdy (2005) and for unbounded
polygonal domains by Crowdy (2007) using Schottky–Klein prime functions (see
also DeLillo 2006).

The techniques in this paper differ from those employed by Crowdy &
Marshall (2006). They follow the approach of Schiffer (1950) giving the radial
and circular slit maps in terms of Green’s functions by using Schottky–Klein
prime functions of the circular domains. By contrast, we use directly the
properties that such mappings must have and basic reflection arguments to
derive our formulae without recourse to Green’s functions. There is a close
connection between reflections in circles and the Schottky group, which DeLillo
(2006) uses to derive relations between the Schottky–Klein prime functions and
(bounded and circular) slit maps in the context of Schwarz–Christoffel mapping.

Green’s functions for multiply connected domains are useful in many
applications. Crowdy & Marshall (2007) have given Green’s functions for circle
domains in terms of Schottky–Klein prime functions. Our methods can also be
used to give explicit formulae for Green’s functions for circle domains. As given
by Nehari (1952), the radial and circular slit maps are central components in the
construction of Green’s functions of a given domain. In a similar fashion, the
combined circular/radial slit map given below can be used for the construction of
the Robin function, the Green’s function for the mixed boundary-value problem.
With our approach, the maps to (bounded) circular and radial slit discs and
annuli are also needed. However, these maps are closely related to the maps
given below. The circular slit disc map is already given by DeLillo (2006). Details
will appear in a forthcoming article.

The paper is organized as follows. In §2, we give some preliminaries on
reflection in circles. In §3, we give simple derivations of infinite product formulae
for maps wZf(z) from circle domains to canonical radial, circular and combined
radial/circular slit domains. We prove convergence of the formulae for domains
satisfying a separation condition. The evaluation of the (truncated) product
formula based on successive reflections is very inefficient. Therefore, in §4, we
give an efficient method for calculating the slit maps based on solving a least-
squares problem, as given by Trefethen (2005; see also Finn et al. 2003).
2. Preliminaries

We shall introduce notation, recall basic facts about reflections in circles and relate
useful information. As already mentioned, wZf(z) is a conformal map f :U/P

from a circle domain to a slit domain of connectivitym, with cj and rj denoting the
centres and radii, respectively, of the mutually exterior boundary circles Cj.
Proc. R. Soc. A (2008)



Figure 1. NZ1 levels of reflected circles and centres for unbounded case.

1721Radial and circular slit maps
The reflection of z through a circle C with centre c and radius r is given by

z� Z rC ðzÞdcC
r2

�zK �c
; ð2:1Þ

i.e. z and z� are symmetric points with respect to the circle C. If CZCt, where t is
an index of a circle, we will denote rCt

by rt. In our work, the function f that maps
U on to a canonical slit domain is known to exist by classical uniformization results
of Koebe, but no formula is provided by the non-constructive proofs. We develop
our mapping formulae by using analytic continuation with the reflection principle
to extend f onto C

�n lim: pts:f g: Briefly, we begin by continuing f beyond U with
reflection across its m boundary circles, Cj. We repeat this process, reflecting
across the m(mK1) reflections of the original m boundary circles thereby
producing m(mK1)2 additional reflected circles. Unlimited iteration of this process
produces a global extension, f̂ , of f. The values of the extension are obtained at
each reflection by reflecting the values of the already defined function across the
appropriate boundary slit. Then it can be seen that the global f̂ is characterized by
its zeros and poles and that the formula for f in terms of infinite products of these
zeros and poles follows. It is useful to note that the number of new regions and new
boundary components created by the reflections at a given level is mK1 times that
at the preceding level.

We need the notation of multi-indices to denote reflected domains and boundary
circles. When U is reflected through the boundary circle C1, it produces a domain
U1dr1(U) inside C1 that is bounded by C1 and the reflections of C2,., Cm, which
we denote C12,C13,., C1m, respectively, i.e. C1jZr1(Cj). Similarly, UkZrk(U) and
CkjZrk(Cj), jsk. Figure 1 illustrates reflections of circles and centres for mZ3 for
one level (NZ1, below). In general, for a multi-index, nZn1n2 . nn and a quantity
Q (point, circle or region),

Qn Z rnðQÞZ rn1rn2.rnnðQÞZ rn1ðrn2ð.ðrnnðQÞÞ.ÞÞ: ð2:2Þ
Proc. R. Soc. A (2008)



Figure 2. Maps from unbounded circle domains to radial and circular slit domains with a Cartesian
grid. The products are truncated to NZ4 levels of reflection. With NZ3 the slits appear to be
slightly open as in figure 3.

T. K. DeLillo et al.1722
Definition 2.1. The set of multi-indices of length n will be denoted

sn Z fn1n2.nn : 1%nj%m; nksnkC1; k Z 1;.;nK1g; nO0; ð2:3Þ

and s0Zf (in which case niZi for n2s0 below). Also

snðiÞZ fn2sn : nnsig; ð2:4Þ
denotes the set of sequences in sn whose last factor never equals i.

From propostion 1 of DeLillo et al. (2004), we also have that if n2sn, nO1,
then UnZrn Un1:::nnK1

� �
is a circular domain with outer boundary Cn and mK1

interior boundary circles. Clearly, sn contains m(mK1)nK1 elements, which is
consistent with our earlier comment that the number of circular domains Un at a
particular level of reflections, say n2sn, is mK1 times the number of domains
U~n, ~n2snK1, at the preceding level.

In order to state our convergence results, we need the following definition and
lemma. The separation parameter of the region is

Ddmax
i;j;isj

ri Crj
jciK cj j

!1; 1% i; j%m; ð2:5Þ

for the assembly of m mutually exterior circles that form the boundary of U
(cf. Henrici 1986, p. 501). Let ~Cj denote the circle with centre cj and radius rj/D.
Then geometrically, 1/D is the smallest magnification of the m radii such that
at least two ~Cj ’s just touch. We will use the following inequality from Henrici

(1986; p. 505):

Lemma 2.2. X
n2snC1

r 2n%D4n
Xm
iZ0

r 2i : ð2:6Þ

3. Maps to the canonical radial and circular slit domains

In this section, we use simple reflection arguments to derive the mappings of
unbounded circle domains to the canonical radial and circular slit domains as
well as mapping to a domain with both radial and circular slit boundary
components (figures 2 and 3).
Proc. R. Soc. A (2008)



Figure 3. Map to circular/radial slit domain with NZ3 levels of reflection.

1723Radial and circular slit maps
(a ) Radial slit maps

We will give a detailed derivation and proof of the formula for a conformal
mapping f of an m-connected circle domain U onto a radial slit domain P with
f(a)Z0 and f(N)ZN. We begin with a brief outline of the procedure. First, we
extend f to a globally defined (many valued) f̂ on C

�n lim: pts:f g by repeated use
of the reflection principle. When f or f̂ is reflected across a circle C, the
corresponding extension of wZf(z) across the radial slit gZf(C ) at angle q is
given by reflecting w across g to w�Zei2q �w . The latter reflection leaves the
w-values zero and infinity fixed and hence the zero set of the extended f will be
the point a and all of its reflections, and similarly for N and the other the poles of
f̂ Thus it seems plausible to think that the mapping f :U/P can be expressed by
a formula

f ðzÞZ ðzKaÞ
Ym
kZ1

YN
jZ0

n2sj kð Þ

zK rnðakÞ
zK rnðckÞ

; ð3:1Þ

where the ak’s are the reflections of a across the boundary circles Ck and ck’s
are the reflections of N across the boundary circles of U. Further details
including convergence will be proven when the m circles with centres ck satisfy
our separation condition in theorem 3.2. Note that f(a)Z0 and f ðzÞ=zZOð1Þ
near N.

It is important to note that, although the global f̂ is many valued, the diffe-

rential expression f̂
0ðzÞ=f̂ ðzÞ is single valued. Indeed, any two values, f̂ rðzÞ and

f̂ sðzÞ of f̂ at a point z 2C
�n lim: pts:f g are related by the composition of an even

number of reflections in lines and hence f̂ sðzÞZAf̂ rðzÞ for some A2C. The
differential expression, f 0ðzÞ=f ðzÞ, is invariant under maps w1Aw; i.e.
ðaf ðzÞÞ0=ðaf ðzÞÞZ f 0ðzÞ=f ðzÞ. Thus, if one begins with f 0 zð Þ=f zð Þ in U, the

reflection process yielding the many-valued f̂ also defines a global analytic

function, f̂
0ðzÞ=f̂ ðzÞ, that is defined and single valued on C

�n lim: pts:f g. We shall
refer to SðzÞZ f 0ðzÞ=f ðzÞ as the singularity function. Our proof will depend on
showing that

SðzÞZ 1

zKa
C
Xm
kZ1

X
jZ0

n2sj kð Þ

1

zK rnðakÞ
K

1

zK rnðckÞ

� �
; ð3:2Þ
Proc. R. Soc. A (2008)
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or in convergent form,

SðzÞZ 1

zKa
C
Xm
kZ1

XN
jZ0

n2sjðkÞ

rnðakÞK rnðckÞ
ðzK rnðakÞÞðzK rnðckÞÞ

� �
: ð3:3Þ

Our task is to show that, indeed, f 0ðzÞ=f ðzÞZSðzÞ: Note that

f 0ðzÞ
f ðzÞ Z

1

z
C

1

z2

� �
and SðzÞZ 1

z
C

1

z2

� �
: ð3:4Þ

We will show that the sums truncated to N levels of reflection,

SN ðzÞZ
1

zKa
C
Xm
kZ1

XN
jZ0

n2sjðkÞ

1

zK rnðakÞ
K

1

zK rnðckÞ

� �
; ð3:5Þ

converge uniformly to S(z) for z 2U as N/N, provided the circles satisfy our
separation condition, that S(z) satisfies an appropriate boundary condition, and
that f ðzÞZexpð

Ð
SðzÞ dzÞ, our main theorem.

Our boundary conditions are given by

Lemma 3.1. RefðzK ckÞf 0ðzÞ=f ðzÞgZ0; z 2Ck:

Proof. For z 2Ck; we have zZckCrke
iq and since f(z) maps to radial slits, we

have arg f(z)Zconst. Therefore,

0Z
v

vq
arg f ðzÞZ v

vq
Im log f ðck Crke

iqÞZ Im irke
iq f

0

f
ZRe rke

iq f
0

f
ðck Crke

iqÞ:

ð3:6Þ
&

We now state our main theorem for radial slit maps.

Theorem 3.2. Let P be an unbounded m-connected radial slit region, 0;N2P,
and U a conformally equivalent circular domain, a;N2U. Furthermore, suppose

U satisfies the separation property D!ðmK1ÞK1=4 for mO1. Then U is mapped
conformally onto P by f with f (a)Z0 and f (N)ZN if and only if

f ðzÞZCðzKaÞ
Ym
kZ1

YN
jZ0

n2sjðkÞ

zK rnðakÞ
zK rnðckÞ

; ð3:7Þ

for some constant C. &

Proof. The proof, that a map f to a radial slit domain must necessarily be of
the form (3.7), follows very closely the proof of theorem 1 by DeLillo et al. (2004).
The central idea is to prove that f 0ðzÞ=f ðzÞZSðzÞ by means of the argument
principle. We shall use the following two results whose proofs are given after the
present proof in order to keep the essence of the present proof from being
obscured by calculation details.

(i) Convergence: SðzÞZ limN/NSN ðzÞ uniformly on U.
(ii) Boundary conditions: Re fðzK sjÞSðzÞgz2Cj

Z0; jZ1; :::;m.
Proc. R. Soc. A (2008)



1725Radial and circular slit maps
For z 2U, we define the functions

HðzÞd
ðz

SðzÞ dz; HN ðzÞd
ðz

SN ðzÞ dz; PðzÞdeHðzÞ: ð3:8Þ

We first note that

HN ðzÞZ
ðz

SN ðzÞ dzZ
XN
jZ0

Xm
iZ1

X
n2sjði Þ

ðz 1

zK a ni

K
1

zK sni
dz; ð3:9Þ

is defined and analytic in U since its periods are zero. Indeed
Ð
CtC

SN ðzÞ dzZ0;
tZ1; :::;m, whereCtC is a circle concentric with the boundary circleCtwith radius
slightly larger than that ofCt since the residues add out in pairs. Furthermore,H(z)
is analytic in U since

HðzÞZ lim
N/N

HN ðzÞZ lim
N/N

ðz
SN ðzÞ dzZ

ðz
SðzÞ dz; z 2U; ð3:10Þ

with SN ðzÞ/SðzÞ uniformly on closed subsets of U.
The next step is to develop a formula for the antiderivative (up to an

additive constant)

HN ðzÞZ
ðz

SN ðzÞ dzZ
XN
jZ0

ðzXm
iZ1

X
n2sjði Þ

1

zK a ni

K
1

zK sni

� �
dz

Z
XN
jZ0

Xm
iZ1

X
n2sjði Þ

ðz 1

zK ani
K

1

zK sni
dz

Z
XN
jZ0

Xm
iZ1

X
n2sjði Þ

log
zK ani
zK sni

� �

Z
Xm
iZ1

XN
jZ0

n2sj ið Þ

log
zK ani
zK sni

� �
; ð3:11Þ

where each logarithm is the branch that vanishes at zZN, i.e. log1Z0. From
the preceding formula, one has

PðzÞZ lim
N/N

exp fHN ðzÞgZ lim
N/N

YN
jZ0

n2sj ið Þ

zK ani
zK sni

� �
; ð3:12Þ

and hence the product formula for P(z),

PðzÞZ eH ðzÞ Z
Ym
iZ1

YN
jZ0

n2sj ið Þ

zK ani
zK sni

� �
: ð3:13Þ

Our theorem, f ðzÞZA
Ð z PðzÞ dzCB; is equivalent to showing that the quotient

QðzÞd f ðzÞ
PðzÞhconst: ð3:14Þ
Proc. R. Soc. A (2008)
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To accomplish this, we will apply the argument principle to Q(z). First, observe
that P 0ðzÞZH 0ðzÞeHðzÞZSðzÞPðzÞ; i.e. P 0ðzÞ=PðzÞZSðzÞ, and

Q 0 Z
f

P

f 0

f
K

P 0

P

� �
ZQ

f 0

f
KS

� �
: ð3:15Þ

Then, for zZcjCrje
iq 2Cj , the boundary conditions of lemma 3.1 and theorem

3.4 on f 0=f and S, respectively, give

v

vq
arg QðzÞZ v

vq
Im flog QðzÞgZRe ðzK cjÞ

Q 0ðzÞ
QðzÞ

� �

ZRe ðzK cjÞ
f 0ðzÞ
f ðzÞKSðzÞ

� �� �
Z 0: ð3:16Þ

By our construction of S(z), f 0ðzÞ=f ðzÞKSðzÞ is continuous on all Cj. Therefore, arg
Q is constant on each of them boundary circles, Cj. Equivalently, Q(Cj), the image
of Cj, lies on a half-ray emanating from the origin. It is clear by the local behaviour
of f and formula (3.13) thatQZf/P is continuous on eachCj and not equal to 0 orN
there, since f ;Ps0. Thus, for any w0 2CnQðCjÞ, jZ1;.;m, the winding
number of QðCjÞ around w0, nðQðCjÞ;w0ÞZ0 for all j. Let CR be a large circle of
radius R centred at the origin and containing w0 and all the Cj’s in its interior, and
write CZC1g/gCmgCR with the curves oriented so that the region interior to
CR and exterior to the Cj’s is on the left. Since Q has no poles in the region, by the
argument principle (for bounded regions), the number of times Q(z) assumes the
value w0 is

nðQðCÞ;w0ÞZnðQðC1Þ;w0ÞC/CnðQðCmÞ;w0ÞCnðQðCRÞ;w0ÞZnðQðCRÞ;w0Þ:
ð3:17Þ

We now will show that nðQðCRÞ;w0ÞZ0. First,

nðQðCRÞ;w0ÞZ
1

2pi

ð
jzjZR

Q 0ðzÞ
QðzÞKw0

dz Z
1

2pi

ð
jzjZR

Q 0ðzÞ=QðzÞ
1Kw0=QðzÞ dz: ð3:18Þ

Recall that Q 0ðzÞ=QðzÞZ f 0ðzÞ=f ðzÞKSðzÞZð1=zÞC 1=z2
	 


Kð1=zÞC 1=z2
	 


ZO
ð1=z2Þ for z near N, and that, QðNÞZ f ðNÞ=PðNÞ is a finite constant. It suffices
to assume w0sQðNÞ. Then w0sQðzÞ for R sufficiently large and there are
constants A;BO0 such thatð

jzjZR

Q 0ðzÞ=QðzÞ
1Kw0=QðzÞ dz

����
����%A

ð
jzjZR

jQ 0ðzÞ=QðzÞjj dzj%B

ð2p
0

1

R2
R dq/0; ð3:19Þ

asR/N.Therefore,nðQðCÞ;w0ÞZ0 andQðzÞsw0 forw0;QðCjÞ andw0sQðNÞ:
Thus, Q assumes values only on the radial segments QðCjÞ (or QðNÞ) and hence,
by the open mapping property of analytic functions, Qmust be constant on U.

Finally, we show that a function wZf(z) of the form (3.7) always determines a
conformal map to the conformally equivalent slit domain P with f(a)Z0 when U
satisfies the separation property: by the basic existence theorem for maps of multiply
connected domains, U is conformally equivalent, via a map g with g(a)Z0, to some
radial slit domain P

0. By the above argument, g(z) must have the form (3.7), and by
uniqueness of the conformal maps we must have P0ZCP for some constant C. &

In the special case when mZ2, there is no restrictive separation hypothesis;
since then D! mK1ð ÞK1=4Z1 is equivalent to the fact that the two boundary
components are disjoint.
Proc. R. Soc. A (2008)



1727Radial and circular slit maps
(i) Convergence of S(z)

For jZ0; 1; 2;.; we write

AjðzÞZ
Xm
iZ1

X
n2sjði Þ

1

zK ani
K

1

zK sni

� �
Z
Xm
iZ1

X
n2sjði Þ

aniK sni
ðzK aniÞðzK sniÞ

; ð3:20Þ

and hence, in brief notation,

SN ðzÞZ
XN
jZ0

AjðzÞ; SðzÞZ lim
N/N

SN ðzÞ: ð3:21Þ

Let

dZ dU Z inf
z2U

jzK anj; jzK snj : k Z 1;.;m; n2sf g: ð3:22Þ

Then, clearly dO0 holds since the an’s and the Sn’s lie inside the circles.
We have the following

Theorem 3.3. For connectivity mR2, SN (z ) converges to S (z ) uniformly on U
satisfying the following estimate

jSðzÞKSN ðzÞjZOððm2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
ÞNC1Þ; ð3:23Þ

for regions satisfying the separation condition

D!
1

mK1ð Þ1=4
: ð3:24Þ

Proof. Note that the number of terms in the Aj(z) sum is OððmK1ÞjÞ: This
exponential increase in the number of terms is the principal difficulty in establishing
convergence. Recall that rni is the radius of circle Cni. We bound Aj(z) for z 2U by
using the facts janiK snij!2rni; and the Cauchy–Schwarz inequality, as follows:

jAjðzÞj%
X

n2sjði Þ

Xm
iZ1

janiK snij
jzK anijjzK snij

%
2

d2

X
n2sjðiÞ

Xm
iZ1

rni

%
2

d2

X
n2sjðiÞ

Xm
iZ1

r 2ni

0
@

1
A1=2 X

n2sjðiÞ

Xm
iZ1

1

0
@

1
A1=2

Z
2

d2

X
n2sjðiÞ

Xm
iZ1

r 2ni

0
@

1
A1=2 ffiffiffiffiffi

m
p

ðmK1Þ j=2

%
2

d2
D2j

Xm
iZ1

r 2i

 !1=2 ffiffiffiffiffi
m

p
ðmK1Þ j=2

%CD2jðmK1Þj=2; ð3:25Þ
by lemma 2.2 where dZdU. Therefore, the series converges if D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
!1: &
Proc. R. Soc. A (2008)
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(ii) S(z) satisfies the boundary condition

Here, we prove that S(z) satisfies the boundary condition

Re fðzK sjÞSðzÞgz2Cj
Z 0; ð3:26Þ

as claimed in the proof of the main theorem. We will use the formula

Re
w

wK1
C

w�

w�K1

� �
Z 1; ð3:27Þ

where w and w�Z1= �w are symmetric points with respect to the unit circle.
The following theorem shows, for general m, that S(z) satisfies the boundary

condition for f 0ðzÞ=f ðzÞ.
Theorem 3.4. If D! mK1ð ÞK1=4, then for z 2Ci

Re ðzK siÞSN ðzÞf gZOððD2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
ÞN Þ; ð3:28Þ

and

Re ðzK siÞSðzÞf gZ 0: ð3:29Þ

Proof. The idea of the proof is, for z 2Cp, to use properties of the reflections
(2.2) to group terms in SN(z) related by reflection rp through Cp with z 2Cp as
follows:

SN ðzÞZ K
1

zK cp
C

1

zKa
C

1

zK ap

� �� �
C/

C
1

zK an
C

1

zK apn

� �
K

1

zK sn
C

1

zK spn

� �� �
C/: ð3:30Þ

Then, multiplying by zK cp, we have in more detail,

ðzK spÞSN ðzÞZK1C
ðzK spÞ=ðaK spÞ

ðzK spÞ=ðaK spÞK1
C

ðzK spÞ=ðapK spÞ
ðzK spÞ=ðapK spÞK1

C
XNK1

jZ0

Xm
iZ1

X
n2sjði Þ;
ni;n1sp

ðzK spÞ=ðaniK spÞ
ðzK spÞ=ðaniK spÞK1

C
ðzK spÞ=ðrpðaniÞK spÞ

ðzK spÞ=ðrpðaniÞK spÞK1

� �

K
XNK1

jZ0

Xm
iZ1

X
n2sjði Þ;
ni;n1sp

ðzK spÞ=ðsniK spÞ
ðzK spÞ=ðsniK spÞK1

C
ðzK spÞ=ðrpðsniÞK spÞ

ðzK spÞ=ðrpðsniÞK spÞK1

� �

CðzK spÞ
Xm
jZ1;
jsp

Xm
iZ1

X
jn2sN ði Þ

ajniK sjni
ðzK ajniÞðzK sjniÞ

� �
: ð3:31Þ
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1729Radial and circular slit maps
We take the real part of the above expression and using, for instance, wZðzK spÞ=
ðanK spÞ and noting that w*ZðzK spÞ=ðrpðanÞK spÞ (3.27) gives

Re
ðzK spÞ=ða nK spÞ

ðzK spÞ=ða nK spÞK1
C

ðzK spÞ=ðrpðznÞK spÞ
ðzK spÞ=ðrpða nÞK spÞK1

� �

ZRe
w

wK1
C

w�

w�K1

� �
Z 1: ð3:32Þ

Taking the real part of (3.31), we see that the first three lines sum to 0. The final
mK1 terms, all lying inside circles Ci, isp, approximate the truncation error and
are estimated by X

n2snC1

r 2n%D4N
Xm
iZ1

r 2i : ð3:33Þ

This gives our final result

Re ðzK spÞSN ðzÞ
 �

ZOð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
ðD2N ðmK1ÞN=2Þ: ð3:34Þ

&

(b ) Circular slit maps

The derivation of the map, wZ f zð Þ from an unbounded circle domain to the
conformally equivalent unbounded circular slit domain is similar to that of
the radial slit domain. This map is closely related to the Green’s function for
the Dirichlet boundary-value problem. Once again f ðaÞZ0 and f ðNÞZN with
f ðzÞwz; zzN: Again, ai is the reflection of a across circle Ci and ciZsi, the
centre of circle Ci , is the reflection of N across Ci. In the w-plane, 0 and N
just reflect back and forth to each other. Therefore, when we extend f, we will
have f ðaiÞZN and f ðsiÞZ0. In this way, we see that all odd numbers of
reflections anoidrnoðaiÞ; jnojZ2kC1 of ai and all even numbers of reflections

sneidrneðciÞ; jnojZ2k of ci will be simple zeros, f ðanoiÞZ f ðsneiÞZ0. Likewise, all

odd numbers of reflections snoi; jnojZ2kC1 of ci and all even numbers of
reflections a nei; jnojZ2k of ai will be simple poles, f ðaneiÞZ f ðsnoiÞZN. The
infinite product for wZ f ðzÞ therefore has the form,

f ðzÞZ ðzKaÞ
Ym
iZ1

YN
jZ0

ne; no2sjði Þ

ðzK rnoðaiÞÞðzK rneðciÞÞ
ðzK rneðaiÞÞðzK rnoðciÞÞ

: ð3:35Þ

(where reflections back to a or N are excluded from the product) with
f ðaÞZ0, provided the m circles with centres ck satisfy our standard separation
criterion.

Now note that, if a circular slit in the w-plane is at radius r1, then w reflects to
r 21=w . Reflection through another circular slit with radius r2 will then take w
to ðr2=r1Þ2w; and so on. Therefore, an even number successive reflection through
circular slits will take wZ f ðzÞ to AwZAf ðzÞ; for some A real. As a result, the
extended function f 0ðzÞ=f ðzÞZAf 0ðzÞ=Af ðzÞ is invariant under even numbers
of reflections and hence is single valued. Here, our singularity function, in
Proc. R. Soc. A (2008)
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non-convergent form, will be

SðzÞZ f 0ðzÞ=f ðzÞZ d

dz
log f ðzÞ

Z
1

zKa
C
Xm
iZ1

XN
jZ0

ne;no2sjði Þ

1

zKa noi

K
1

zKsnoi

� �
C

1

zKsnei
K

1

zKa nei

� �
; ð3:36Þ

or in convergent form,

SðzÞZ 1

zKa
C
Xm
iZ1

XN
jZ0

ne;no2sjði Þ

a noiK snoi
ðzK a noiÞðzK snoiÞ

� �
C

sneiK a nei

ðzK sneiÞðzK a neiÞ

� �
:

ð3:37Þ
Again, our task is to show that f 0ðzÞ=f ðzÞZSðzÞ: Note that, again,

f 0ðzÞ
f ðzÞ Z

1

z
C

1

z2

� �
and SðzÞZ 1

z
C

1

z2

� �
: ð3:38Þ

We will show that the sums truncated to N levels of reflection,

SN ðzÞZ
1

zKa
C
Xm
iZ1

XN
jZ0

ne;no2sjðiÞ

1

zK a noi

K
1

zK snoi

� �
C

1

zK snei
K

1

zK a nei

� �
;

ð3:39Þ
converge uniformly to SðzÞ for z 2U as N/N, provided the circles satisfy our
separation condition, that SðzÞ satisfies an appropriate boundary condition, and
that f ðzÞZexpð

Ð
SðzÞ dzÞ, our main theorem.

Our boundary conditions are given by

Lemma 3.5. ImfðzK ckÞf 0ðzÞ=f ðzÞgZ0; z 2Ck:

Proof. For z 2Ck ; we have zZckCrke
iq and since f ðzÞ maps to circular slits,

we have log jf ðzÞjZRe log f ðzÞZconst. Therefore,

0Z
v

vq
Re log f ðzÞZ v

vq
Re log f ðckCrke

iqÞZRe irke
iq f

0

f
ZKIm rke

iq f
0

f
ðckCrke

iqÞ:

ð3:40Þ
&

We now state our main theorem for circular slit maps.

Theorem 3.6. Let P be an unbounded m-connected circular slit region,
0;N2P, and U a conformally equivalent circular domain, a;N2U. Further-
more, suppose U satisfies the separation property D!ðmK1ÞK1=4 for mO1. Then
U is mapped conformally onto P by f with f ðaÞZ0 and f ðNÞZN if and only if

f ðzÞZ ðzKaÞ
Ym
iZ1

YN
jZ0

ne;no2sjðiÞ

ðzK rnoðaiÞÞðzK rneðciÞÞ
ðzK rneðaiÞÞðzK rnoðciÞÞ

; ð3:41Þ

for some constant C.
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1731Radial and circular slit maps
Proof. The proof follows the argument for the radial slit case, using the
modified convergence theorems and the following boundary conditions for
circular slits. &

(i) Convergence of S(z)
For jZ0; 1; 2;.; we write

Aj zð ÞZ
Xm
iZ1

X
ne;no2sjði Þ

a noiK snoi
ðzK a noiÞðzK snoiÞ

� �
C

sneiK a nei

ðzK sneiÞðzK a neiÞ

� �
; ð3:42Þ

and hence, in brief notation,

SN ðzÞZ
XN
jZ0

AjðzÞ; SðzÞZ lim
N/N

SN ðzÞ: ð3:43Þ

Let

dZ dU Z inf
z2U

jzK anj; jzK snj : k Z 1;.;m; n2sf g: ð3:44Þ

Then, clearly d!0 holds since the an’s and the Sn’s lie inside the circles.
The convergence of SN ðzÞ to SðzÞ is identical to theorem 3.3 for the radial

case. The details of the proof are nearly identical and we omit them.
(ii) S(z) satisfies the boundary condition.

Here, we prove that S zð Þ satisfies the boundary condition

Im zK sj
� �

S zð Þ
 �

z2Cj
Z 0; ð3:45Þ

as claimed in the proof of the main theorem. We will use the formula

Im
w

wK1
K

w�

w�K1

� �
Z 0; ð3:46Þ

where w and w�Z1= �w are symmetric points with respect to the unit circle.

The following theorem shows, for general m, that SðzÞ satisfies the boundary
condition for f 0ðzÞ=f ðzÞ.
Theorem 3.7. If D! mK1ð ÞK1=4, then for z 2Ci

Im ðzK siÞSN ðzÞf gZOððD2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
ÞN Þ; ð3:47Þ

and

Im ðzKsiÞSðzÞf gZ 0: ð3:48Þ
Proof. The idea of the proof is, for z 2Cp, to again use the properties of

reflections (2.2) to group terms in SN ðzÞ related by reflection rp through Cp with
z 2Cp as follows:

SN ðzÞZ
1

zK cp
C

1

zKa
K

1

zK ap

� �� �
C/

G
1

zK a n

K
1

zK apn

� �
K

1

zK sn
K

1

zK spn

� �� �
C/; ð3:49Þ
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where the plus sign is used if jnj is even and a minus sign if jnj is odd. Then,
multiplying by zK cp, we have in more detail,

ðzK spÞSN ðzÞZ 1C
ðzK spÞ=ðaK spÞ

ðzK spÞ=ðaK spÞK1
K

ðzK spÞ=ðapK spÞ
ðzK spÞ=ðapK spÞK1

G
XNK1

jZ0

Xm
iZ1

X
n2sjðiÞ;
ni;n1sp

ðzK spÞ=ðaniK spÞ
ðzK spÞ=ðaniK spÞK1

K
ðzK spÞ=ðrpða niÞK spÞ

ðzK spÞ=ðrpða niÞK spÞK1

� �

G
XNK1

jZ0

Xm
iZ1

X
n2sjði Þ;
ni;n1sp

ðzK spÞ=ðsniK spÞ
ðzK spÞ=ðsniK spÞK1

K
ðzK spÞ=ðrpðsniÞK spÞ

ðzK spÞ=ðrpðsniÞK spÞK1

� �

GðzK spÞ
Xm
jZ1;
jsp

Xm
iZ1

X
jn2sN ðiÞ

ajniK sjni
ðzK ajniÞðzK sjniÞ

� �
: ð3:50Þ

We take the imaginary part of the above expression and using, for instance,
wZðzK spÞ=ða nK spÞ and noting that w*ZðzK spÞ=ðrpða nÞK spÞ; (3.46) gives

Im
ðzK spÞ=ðanK spÞ

ðzK spÞ=ða nK spÞK1
K

ðzK spÞ=ðrpðznÞK spÞ
ðzK spÞ=ðrpða nÞK spÞK1

� �

Z Im
w

wK1
K

w�

w�K1

� �
Z 0: ð3:51Þ

Taking the imaginary part of (3.50), we see that the first three lines sum to 0.
The final mK1 terms, all lying inside circles Ci , isp, approximate the
truncation error and are estimated byX

n2snC1

r 2n%D4N
Xm
iZ1

r 2i : ð3:52Þ

This gives our final result

Im ðzK spÞSN ðzÞ
 �

ZOð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mK1

p
ðD2N ðmK1ÞN=2Þ: ð3:53Þ

&

(c ) Circular and radial slit map

Here we consider the map wZ f ðzÞ from the exterior of m discs to the exterior
domain bounded by a mixture of radial and circular slits. This map is discussed
by Koebe (1916). The mapping formula that we derive here appears to be new. It
is not discussed, for instance, in such standard presentations as Nehari (1952) or
Schiffer (1950).

Choosing a point a2U, we let f ðaÞZ0 and f ðNÞZN with f ðzÞ=zZOð1Þ;
z/N. Reflections through radial slits will keep 0 and N fixed, whereas that
through circular slits will swap 0 and N as in the circular slit map above. Let rne
denote a sequence of reflections with an even number of reflections through
Proc. R. Soc. A (2008)



Figure 4. Map to radial slit domain using least-squares method.

1733Radial and circular slit maps
circular slits and rno denote a sequence with an odd number of reflections through
circular slits. Then, rneðaÞ and rnoðNÞ are simple zeros of f(z) and rneðNÞ and
rnoðaÞ are simple poles. Therefore, we have

f ðzÞZCðzKaÞ
Y
ne;no

ðzK rneðaÞÞðzK rnoðNÞÞ
ðzK rneðNÞÞðzK rnoðaÞÞ

: ð3:54Þ

(Note that the product over iZ1;.;m is already included in the reflections of a
and N and does not appear explicitly here.) Using arguments like those for the
radial and circular slit mappings, one can prove that the separation and
convergence theorems hold for the mixed radial and circular slit boundary
components. We omit the details of the proof. Figure 3 is a graph of an mZ4 case
with two circular and two radial slits produced by evaluating a truncated version
of (3.54).

Remark 3.8. Numerical experiments indicate that our convergence criterion
for the infinite product formulae is probably not necessary for convergence. We
have been unable to find a condition that is both necessary and sufficient.
4. Numerics using least squares

The characterization by means of reflections of the slit maps considered in this
paper is natural and leads to straightforward derivations. On the other hand, as
the number of circles and slits grows, the required number of reflections for a
prescribed accuracy grows exponentially and computation times become
impractically large. As an anecdotal example, in one case of the maps like that
in figure 4, if m was increased from 3 to 4, the computation time on the third
author’s laptop increased from 3.5 to 3970 s. Therefore, it is essential to find fast
algorithms to compute these maps. We describe such a procedure here.

The idea is closely related to an algorithm given by Trefethen (2005) for
finding the Green’s function for the exterior of discs. We begin by expressing the
desired map f as

log f ðzÞZ log ðzKaÞCgðzÞ; ð4:1Þ
for a function g that is analytic in U (and its boundary, according to equations
(3.1) and (3.35)). This form imposes the normalizations f ðaÞZ0 and f ðNÞZN.
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Box 1.
MATLAB code for finding the parameters and computing the values of a radial slit map
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Box 2.
Driver for the code in box 1 for the map from an exterior domain bounded by five circles to a
radial slit domain

1735Radial and circular slit maps
The remainder gðzÞ is then expanded in the form

gðzÞz
Xm
kZ1

XJ
jZ1

ak;j

ðzK ckÞj
; ð4:2Þ

.
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which allows singularities in each of the circles. In practice, we discretize the
boundary of U by placing N equally spaced points on each of the circles and
express the double sum of (4.2) as a matrix–vector product Ax, where each
column of the matrix A is the discretization of some ðzK ckÞKj and xZ ak;j

	 

.

The unknown coefficients in x are determined by the fact that Im ðlog f Þ
is constant on radial slits and Re ðlog f Þ is constant on circular slits. Indeed, the
key fact is that we can impose these conditions linearly. To do this, we need to
break both A and x into its real and imaginary parts. Letting AZARC iAI and
xZxRC ixI, we trivially get

½Re g�ZARxRKAIxI; ½Im g�ZAIxRCARxI: ð4:3Þ
For concreteness, let us continue the discussion in terms of the radial slit
case. The constant values of Im log f on each slit are not known in advance.
Instead, we ask that pairwise differences of Im log f be zero around each circle.
Defining

D Z

1 K1

K1 1

K1 1

1 1

K1 1

2
66666664

3
77777775
N!N

; E Z

D

D

1

D

2
66664

3
77775
mN!mN

; ð4:4Þ

we arrive at the expression

E AI AR½ �
xR

xI

� �
zKE Im logðzKaÞ½ �; ð4:5Þ

which is an ordinary linear least-squares problem for the unknown coefficients.
This problem can be solved very quickly even for fairly large discretizations.

Box 1 shows a MATLAB code based on these ideas. The expression (4.1) and
(4.2) for the map is so simple that the function returns a callable object that
evaluates to the computed function. Box 2 illustrates how the code can be used to
map points and create level curves for a domain bounded by five circles. This
example is given in figure 4. Computing the map parameters (setting up and
solving the least-squares system) took approximately 3 s on a 1.4 GHz Pentium-
M laptop.
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