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Abstract 

DeLillo, T.K. and J.A. Pfaltzgraff, Extremal distance, harmonic measure and numerical conformal mapping, 
Journal of Computational and Applied Mathematics 46 (1993) 103-113. 

Estimates of extremal distance and harmonic measure are used to show how the geometric properties of a 
simply connected domain influence the boundary distortion of a conformal map from the unit disk to the 
domain. Numerical examples and remarks on the conditioning of numerical conformal mapping methods are 
included. A sharp estimate is given of the exponential ill-conditioning, known as the crowding phenomenon, 
which occurs for slender regions. 
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1. Introduction 

Many of the most important methods for the numerical computation of a conformal map 
proceed by constructing the boundary correspondence function. Thus extreme stretching or 
compressing of boundary sets by a conformal mapping can increase the discretization error in 
numerical conformal mapping. In this paper we consider a conformal map f from the open unit 
disk D to the simply connected domain 0 bounded by a piecewise smooth, closed curve aR. 
We wish to study how the boundary distortion by f is influenced by elementary geometric 
characteristics of the domain and by the location of f(O). There are two ways to study these 
distortions. One is to look for upper and lower bounds for I f’ 1 as is done in [8,25,26]. The 
other is to apply certain estimates of harmonic measure of boundary sets in terms of extremal 
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distance. By studying how boundary sets may be compressed and expanded under conformal 
maps, we show how the slenderness of 0 can influence the conditioning of the problem and, 
hence, the “resolution” or discretization error in numerical approximations to conformal maps. 
Roughly, there are two ways to ill-condition the problem: (i) by “pinching” or “slitting” the 
domain, which creates “algebraically bad” distortions, as illustrated in estimate (5) and 
Examples 5.1, 5.3 and 5.4, and (ii) by “stretching” the domain, which creates “exponentially 
bad” distortions, as illustrated in estimates (2), (31, (4b) and Examples 5.2 and 5.5. For highly 
elongated domains with aspect ratios on the order of 10 to 1 or more, this latter exponential 
distortion, known as the crowding phenomenon, may make the numerical problem impossible to 
solve. This phenomenon was first noticed by Gaier [9, p.1791. It was also observed in numerical 
experiments in [10,16] and has been discussed further in [4,5,8,25,26]. Methods which circum- 
vent the problem to some extent, by choosing more appropriate computational domains, have 
been proposed in [7,13,18-201. 

The paper is organized as follows. In Section 2, we recall the properties of harmonic 
measure and extremal distance and their relation to conformal mapping. In Section 3, we apply 
an inequality by Pfluger to obtain a sharp estimate of the exponential crowding for regions with 
elongated sections. In Section 4, we consider two estimates, one due to Dubiner, that illustrate 
the less severe algebraic distortions. Finally, in Section 5, we give several explicit and numerical 
examples and make some remarks on numerical methods. 

2. Harmonic measure and extremal distance 

We shall review a few of the basic facts about harmonic measure. The reader is referred to 
[l, Chapters 3 and 41 for more details. 

Let R be a Jordan domain in the z-plane, and let E be an arc on the boundary 30. 

Definition 2.1. The harmonic measure ofE with respect to 0, w(z) = w(z, E, iI>, is the unique 
bounded harmonic function on R with boundary values 1 at interior points of E and 0 at 
interior points of aR -E. 

If z =f(w) maps D conformally onto the Jordan domain 0 and g =f-‘, then 

w(w, g(E), 0) =~(.f(u$ E, fl), 

since harmonic functions are preserved by conformal maps. The boundary arc E maps to an arc 
g(E) on the unit circle. It is a familiar and easy consequence of the mean value property of 
harmonic functions that 

meas(g(E)) = 27~w(O, g(E), 0) = 2~@(f(O), E, a>, (1) 

where meas denotes linear measure on the unit circle. 
Thus, estimates of the harmonic measure o(zO, E, Cl), z0 =f(O), can be used to assess the 

distortion of the boundary set E under conformal mapping by f. Extremal lengths of curve 
families and extremal distances between sets are conformally invariant notions and hence one 
can often find rather precise connections with the conformally invariant harmonic measure 
[2,3]. We will estimate extremal distance in terms of geometric properties of R and &Q. These 
estimates then will yield corresponding bounds on the harmonic measure. 
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Now we recall the notions of extremal length and distance. Let r be a set of locally 
rectifiable arcs y in a. We consider the family of Riemannian metrics ds = p ) dz 1 which 
includes the Euclidean metric. 

Definition 2.2. The extremal length of r is 

h(T, 0) = sup kdi]jl) 

P 
// 

p2 dx dy 
R 

where the supremum is over all nonnegative, Bore1 measurable p = p(x, y) such that 0 < 
/lop2 dx dy < cc). 

Under a conformal map f the metric p will transform as ds = p ]dz I = p’ Idf I where 
p = p/l f’ I. Thus, we see that extremal length is a conformal inuariant, which may be thought 
of as length2/area. 

Next, let K’ and K be two disjoint sets in the closure of R. Let r be the family of arcs in fi 
connecting K’ and K. Then we have the following definition. 

Definition 2.3. The extremal distance between K’ and K is just the extremal length of r, 

A( K’, K, 0) = A(T, 0); 

see [l, p.521. 

Fig. 1. Quadrilateral. Fig. 2. Region for Theorem 3.1. 



106 T. K. DeLillo, J.A. Pfaltzgraff / Numerical conformal mapping 

For the “quadrilateral” (see [l, p.521) in Fig. 1 with marked sides E and E’, the extremal 
distance NE’, E, 0) is also the modulus of this quadrilateral. The region 0 in Fig. 1 with sides 
E, FL E’, F’ may be conformally mapped onto a rectangle R with corresponding sides E:, F, 
E’, F’, when the moduli are equal, that is, if and only if 

A(E’, E, 0) =A(&, E, R) = ;, 

where a = dist(,@, ,!?:I> and b = dist(F, F’) are the dimensions of R. 
Let A be the area of 0, I= d( E’, E, 0) the interior Euclidean distance from E’ to E in 0, 

and w = d(F’, F, 0). If the quadrilateral 0 is a rectangle, then A( E’, E, fi) = l/w. If zO is the 
center of R and 1 B w, then, using the properties of elliptic integrals which arise in the 
Schwarz-Christoffel map from the disk to the rectangle, it is well known 113,181 that 

4 
w(zO, E, 0) - -exp 

IT (4 

In [4] it was noted that for a “slender” region 0 with E’ and E at the “ends” we have 1 x== w 
and A = lw. Thus Rengel’s inequality [l, p.541 or [14, p.221 gives 

h(E’, E, 0) = ;, 

and so 0 maps to the rectangle with aspect ratio = l/w. Then, assuming that a point zO near 
the “center” of fl is mapped to the center of the rectangle, it was observed that (2) gives 

4 
m(+, E, fi) = ;exp( -$rh(E’, E, a)), (3) 

for ACE’, E, a> = I/ w B 1. This expresses the severe compression or “crowding” of the image 
of E (and E’) on the unit circle for slender regions of large aspect ratio; see Example 5.2 for 
an explicit map illustrating this situation. 

Ideally, for our applications, we would like to replace A(E’, E, 0) by “A(zO, E, O)“, where 

f(O) = 20. However, as noted in [l, p.781, if one of the sets E’ shrinks to a point z’, then 
A( E’, E, 0) tends to ~0. We shall see that this problem is avoided in an inequality by Pfluger by 
using a small compact set containing the point. 

3. A sharp estimate of the exponential crowding 

Here we use a theorem due to Pfluger to give an estimate of the exponential crowding for 
regions with elongated sections. The estimate applies generally to any boundary set E at the 
end of a “finger” 0’ of length 1 and width w protruding from 0, as in Fig. 2, and also yields 
the known exponential behavior for the elongated regions in our examples. 

Theorem 3.1. Let the domain fl = 0’ U E” U 0” where R’ (7 0” = 6 and 0’ is a quadrilateral 
with sides E, E”, F, F’ with E U F U F’ c di2, a piecewise smooth curve; see Fig. 2. Fix zO E 0” 
and let 1 = d(E”, E, a’> and w = d(F’, F, 0’). Let A’ be the Euclidean area of 0’. Then 

o(z~, E, 0) GC exp (44 
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where the constant C depends only on zO. 

Proof. Fix z0 E a” and a number 6 E (0, 1) and let K = {z: 1 z -2” I q 6 dist(z,, an”)}. Then 
with [21, Theorem l] (Pfluger), one can obtain the following inequality [2, Eq. 6.3, p.3041: 

o(zO, E, a) G C e-rA(K,E,on), 

where the constant C depends only on z0 and K for a fixed 0, J2’, KU)“, and does not depend 
on the boundary set E. With Definition 2.2 and the metric p that is 0 in 0” and 1 in LI’, we 
obtain the inequality 

Combining this with Pfluger’s inequality yields the results. q 

From (4a), (4b) we make the following observations. 
(i) Suppose R is a slender quadrilateral with sides E, E’, F, F’ and I= d(E’, E, 01, 

w = d(F’, F, a>. We fix z0 near the center of 0, d(z,, E) = +I, and assume that there is a 
crosscut E” separating z,, and E with d(E”, E, 0) = i<l - ~11, A’ = i<l + E’NW for small 
positive E and small E’. Then with Pfluger’s theorem and the reasoning of Theorem 3.1, we 
obtain 

w(zo, E, 0) G C exp (-g(G)) <C, exp( -g). 

The map of the unit disk onto a rectangle shows that the exponent is sharp, cf. (2) above. 
Wegmann [25] also gives estimates with the correct exponential behavior. His approach is 
different and somewhat complementary to ours in that he gives a lower bound for the 
supremum norm of the derivative of the map from the unit disk to an elongated region by 
combining the known behavior of certain explicit maps with a generalization of the Schwarz 
lemma. His results are somewhat less general than ours in that his regions must be contained in 
a smallest rectangle of length 1 and width w. However, he does give a more detailed discussion 
of the constant C for certain regions. See Examples 5.2 and 5.5. 

(ii) If a portion of 0 between z0 and E is a channel whose width 0 = 0(x> is parametrized 
by X, for instance, with a GX < b, then the Ahlfors Distortion Theorem [l, pp. 56, 571, 12, 
Sections 1 and 41 may be used to give a more precise estimate 

(iii> For a slender region (4b) may be interpreted as a St. Venant-like principle, expressing 
the exponential decay-of-influence of boundary data at E on the value of a harmonic function 
at z0 as a function of the distance from z0 to E; see, e.g., [ll]. 
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(iv) Dubiner gives similar estimates in his thesis [8]. His estimates appear to apply to more 
general domains, but they are not as accessible as ours and do not appeal to Pfluger’s theorem. 
Our study of Dubiner’s work has provided a strong motivation for the present work. 

(v) In [3], Beurling gives two definitions of conformally invariant extremal distance between 
a point and a boundary set. He also gives estimates of harmonic measure in terms of his notions 
of extremal distance. We have used Beurling’s results to exhibit the exponential crowding; 
however, we were not able to derive sharp estimates with his results. 

(vi) We note here that there is an extensive literature on the boundary behavior of 
conformal maps with relations to topics such as probability theory. An introduction to that 
literature is given in [15] and the references contained therein. The results there deal with 
distortions of boundary sets and boundaries that are much more pathological than typically 
occur in computational practice, such as fractal boundaries. 

4. A theorem of Dubiner and another estimate 

Though the crowding may be severe for slender regions as Example 5.2 and estimates (2), (3) 
and (4b) demonstrate, the distortions are less severe for regions which are not elongated but 
pinched as in Example 5.1, 5.3 and 5.4. These explicit and computational examples are given in 
Section 5 along with bounds on the derivatives or the distortions of certain boundary arcs. The 
boundary curves are all scaled, so the maximum distance from f(O) to a0 is O(1). The 
minimum distance from f(O) to M&the “thinness’‘-is denoted by (Y. The information on the 
derivatives may be interpreted as follows. Let E be a (small) boundary arc at a distance O(1) 
from f(O). Then, in Examples 5.1, 5.3 and 5.4 and the Cassini oval, 

@(f(O), E, 0) = O(ak), k > 0. 

That is, g(E) is compressed like O(a“), but not so severely as for a slender region as in 
Example 5.2. Similarly, let F be a (small) boundary arc a distance O(a) from f(O). Then in all 
cases 

w(f(O), F, 0) = O(&‘), k > 0. 

That is, g(F) is expanded like O((Y -k), but not more severely. The value of k may depend not 
just on the “thinness” but also on “higher order” or local effects such as curvature, corners, 
etc. 

Below we state and illustrate a theorem of Dubiner on the compression of sets E, but first 
we recall a classical results that indicates the O((r-‘> behavior of g’(O) which is seen in our 
examples. 

Schwarz Lemma. Let f map the unit disk D conformally to a domain 0 contained in D, with 
f(O) = 0 and with b oundary X2 a distance cy from the origin. Then 

ff < If ‘(0) I < 1, 

orforg=f-‘, 

l< [g’(O)1 <a-‘. 



T.K. DeLillo, J.A. Pfaltzgraff / Numerical conformal mapping 109 

Proof. Since I f(z) I G 1, f ‘(0) # 0, and f(z>/z f 0 is analytic for I z I < 1, the maximum and 
minimum principles imply that (Y < ( f< z)/z I < 1. •I 

Dubiner [8, Theorem 8.11 says that if the maximum distance from f(O) to M2 is O(1) and the 
minimum distance from f(O) to a0 is (Y, then for boundary arcs E a distance O(1) from f(O) we 
have, roughly, 

0(f(0), E, 0) < 26. (5) 
We will illustrate this in Example 5.4. 

5. Remarks on numerical methods and examples 

The effects of the geometry of R on Fourier series methods is discussed, for instance, in [5] 
and, for exterior regions, in [6]. A “rule of thumb” due to Zemach [26] says that for even an 
order-of-magnitude approximation to f one needs to take at least N = O(max I f ’ I> Fourier 
coefficients. To see this, suppose a0 is a smooth curve parametrized by arclength (T with total 
arclength L. Let At = 27~/N. Find the smallest N such that Au/At = do/dt for all t. Then 
I f’(e”) I = da/dt = Au/At G NL/2n for all t. Therefore, for N large enough so that fh, the 

derivative of the truncated series, is a good approximation to f’, we require N > 
2+rr(max I f’ 1)/L. For certain explicit cases this rule can be stated more precisely, as shown in 
[5]. The severe stretching in maps to slender regions limits the usefulness of Fourier series 
methods which attempt to approximate the Taylor series of f. These observations are 
illustrated in Examples 5.1 and 5.2. The corresponding Figs. 3 and 4, respectively, show the 
maps to the regions approximated with Wegmann’s method [24]. 

ALPHA=. 9 ALPHR=. 9 ALPHA=. 9 ALPHR=. 94 

ALPHA=. 3 RLPHR=. 2 

Fig. 3. Inverted ellipses with Wegmann’s method. 
ALPHR=. 119 ALPHA=. 29 

Fig. 4. Arctanh regions with Wegmann’s method. 
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The examples below show, as Dubiner claims, that the stretching in g is not as severe as the 
crowding. It seems to be the stretching or loss of resolution that affects the accuracy of 
methods for g also, though it is more difficult to give accuracy estimates in terms of the number 
of mesh points N. This is indicated in, for instance, [23], where it may be noted that, especially 
for the Cassini oval and inverted ellipse, max I g ’ 1 gives a good fit to the discretization error. 
Our (Y replaces Trummer’s ((1 - a’)/(1 + (~~))r/~ for Cassini ovals where 

fO= ( 
2 

2 
ci= 1 +(Y2- (1 -(r2)z2 

and max If' I = lf'(kl)I =O(ae2). 

Also note for g = f - ‘: 

max (g’l =O(a-‘). 

The severe crowding apparently does not necessarily affect the methods for g as results from 
O’Donnell and Rokhlin’s fast implementation of the Kerzman-Trummer method [17] and 
Hough’s implementation of Symm’s method [12] show. 

Example 5.1 (Znuerted ellipse, Fig. 3). N2 is given by ~(a> =p(a)e’” where p(o) = (1 - (1 - 
a2)sin2a)‘12 for 0 G u G 2~ and 0 < LY G 1. This map is derived from the familiar Joukowski 
map to the exterior of an ellipse. We note the following: 

f(z) = 2az 
l+a-(l-a)z2' f ‘(0) = g = O(ff), 

max I f’( = 1 f’(+l)l =cCl, min I f’l = I f’(*i)I =ct2. 

Also note for g = f-‘: 

g’(0) = O(d), min I g’ I = O(a), max I g’ ( = O((Y-~). 

Here the crowding min lg’ I is algebraic in a. 

Example 5.2 (Arctanh, see Fig. 4). We use the map from the disk to the infinite strip to 
generate the bounded domain corresponding to the function f given as follows: 

f(z) = 
arctanh( TZ) 

arctanh( r) 
=log(~),log(~). O<r<l, 

Tr 

a- - 
2 log(1 - Y) ’ 

r-l, f’(O)= L=O(cy), 
Tr 

max I f’l = I f’(*l)l - 2er12a, min I f’( = I f’(*i)l - aa. 

Also note for g = f-‘: 

Tr 
g’(0) = O(d), min I g’ 1 - 2,,eP”/2”, max I g’ I - &TFCY-~. 

Here the crowding min ) g’ I is exponential in CL 
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In [26] Zemach discusses the crowding for the map f to the interior of an ellipse and finds 
similar exponential crowding in (Y, 

2 

max If’ I - &eTziqa. 

Example 5.3 (Slit disk). The function w =f(t), f(O) = 0, defined implicitly by the equation 
W PZ 

(l+w)* = (1+z)2’ O</-<l, 

maps the unit disk conformally onto the slit unit disk. The slit is the interval cr <X G 1 on the 
positive real axis with 

4a l-J1--cL 

/J= (l+ry)*’ (y= 1+/E’ 

For the points ekie, 0 < 8 = B(Lu) < r, that map to 1, 

1-a 
sin(@(cr)) = ~+a, 

and consequently 

sin RW = 
4&L(l- CX) 

(1 +a)* ’ 

where o = o(a) = (r - ~(cx)>/T is the harmonic measure of E, the arc on 1 z 1 = 1 that maps 
onto the full unit circle, w = e”, 0 < t < 2~. Hence the crowding is algebraic. 

Example 5.4 (Slit square). We illustrate (5) by computing the Schwarz-Christoffel map from 
the disk to the unit square slit from i to ia using SCPACK [22]. E is then the portion of the 
boundary from i counterclockwise around the square back to i not including the slit. Table 1 
lists ~(0, E, 0) for various values of (Y. We see there, roughly, the algebraic crowding 

w(0, E, 0) = 1.26. 

Example 5.5 (Rectangle). Here we illustrate the estimates in Theorem 3.1 by computing the 
Schwarz-Christoffel map from the disk to the rectangle 0 with corners (1, iw), (- 1, $w>, 
(- 1, - +w>, (1, - iw> with SCPACK [22]. Let E be the side from (1, - iw> to (1, 3~). Note 
that for this region the length is 1 = 2, the width is w and the area is A = 2w. The origin of the 
unit disk is mapped to z0 = (1 - I’, O), so d(z,, E, L!) = I’. In Table 2, w(zO, E, fl) is given for 
various values of I’ and iw, the aspect ratio of the rectangle. These values, computed with 
SCPACK, are in agreement with the exact values, 

+o, E, 0) = 4 c 
sin($zT) sinh(nr(2 - l’)/w) 

n odd n sinh(2rn/w) ’ 

obtained by separation of variables. Since w(zO, E, 0) - 4e-T”/w/r for 1’ fixed and w JO, 
4e- rr[‘/w/n is found to give a good estimate of w(zO, E, 0). 
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Table 1 

Data for Example 5.4 

(Y ~(0, E, 0) 
1 2 0.762 
1 0.572 z 
1 0.418 s 
I 

0.301 16 
1 ?z 0.215 
1 0.153 64 
1 

iIjj 0.108 

l/G 

1.08 

1.14 

1.18 

1.20 
1.21 

1.22 

1.22 

Table 2 

Data for Example 5.5 

;W 1’ &,, E, fi) 

1.0 1.0 0.25 
1.0 1.2 0.18 
1.0 1.4 0.12 
1.0 1.8 0.035 

0.8 1.0 0.17 
0.8 1.2 0.12 
0.8 1.4 0.074 
0.8 1.8 0.020 

0.4 1.0 0.025 
0.4 1.2 0.011 
0.4 1.4 0.005 2 
0.4 1.8 0.000 86 

0.2 1.0 0.000 49 
0.2 1.2 0.000 10 
0.2 1.4 0.000 021 

0.2 1.6 0.000 004 4 

0.1 1.0 0.000 000 19 

4 
_e-“l’/” 
Tr 

0.27 
0.19 
0.14 
0.075 

0.18 
0.12 
0.081 
0.038 

0.025 
0.011 
0.005 2 
0.0011 

0.000 50 
0.000 10 
0.000 022 
0.000 004 4 

0.000 000 19 
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