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Abstract: Gaier and Gutknecht have shown that many numerical methods for producing the conformal map from the 
unit disk to a simply connected region share a common theoretical basis as solutions of nonlinear integral equations 
arising from the Hilbert transform of a function of the boundary correspondence. We give a brief presentation of this 
classification and extend it somewhat to include some equations for the inverse correspondence, such as those of 
Menikoff and Zemach, Noble, and Schwarz-Christoffel. The use of explicit maps and the method of Bisshopp are also 
brought into this framework. An example illustrating the use of explicit maps is given. 
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1. Introduction 

The so-called auxiliary functions and their conjugate relations were used in Gaier [12] to 
derive methods for approximating the conformal map f from the unit disk D to the interior a of 
a Jordan curve F: 3'(~/). (Below the parameter  of the curve 7/will generally be  taken as 0, polar 
angle o r  o, arclength. Nota t ion  is set in Fig. 1.) Recent ly Gutknecht  [15,17] has specified this 
scheme more completely in terms of  operators on function spaces. The use of  this framework 
generally gives a nonlinear integral equation, involving the conjugation operator,  for the 
boundary  correspondence function, say o ( t ) ,  or its inverse, t ( o ) ,  where f ( e  it) = ~,(o(t)). This 
equation is then solved by  some iterative technique, for instance, a direct functional iteration 
with relaxation or a Newton method. The ma in  computat ional  cost here is the repeated 
application of the conjugation operator  K using FFT's .  The purpose  of  this paper  is to provide a 
brief introduction to this framework, and relate it to certain other  methods  which do not  
necessarily compute  the Fourier series. In the remainder  of  this section we present the relevant 
facts concerning the operator  K and the map f and its derivative. Section 2 discusses the 
classical Theodorsen equation and the related equation of  Menikoff  and Zemach,  which was also 
discussed by  Gutknecht  [17]. In Section 3 we derive the less well-known and related equations of 
Timman, Friberg, and Noble.  Section 4 exploits a form of the auxiliary function suggested by  

* Present address: Dept. of Math., Duke Univ., Durham, NC 27706, U.S.A. 

0377-0427/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 



364 

Table 1 
List of auxiliary functions 

T.K. DeLillo / Numerical Conformal Mapping 

Auxiliary function Related methods 

(H1) h(z).'= f (z )  
(H2) h(z) ,= f ( z ) / z  
(H3) h(z):= log f ( z ) / z  
(H4) h(z):= log f ' ( z )  
(H5) h(z),= log z2f '(z)/ f2(z) 
(H6) h(z):= log z f ' ( z ) / f ( z )  
(H7) h(z):= log f ' ( z ) /g (z )  
(H8) h(z) := g * f (z)  
(H9) h(z)== f * g(z) 

Chakravarthy and Anderson, Fornberg, Wegmann 
(Fornberg, Wegmarm), Melentiev and Kulisch 
Theodorsen, Menikoff-Zemach 
Timman, Noble, Dubiner(?) 
Gutknecht 
Friberg 
Ives, SC, Davis 
composite methods 
composite methods 

Note that (H5) and (H6) are linear combinations of (H3) and (H4). Therefore, applying integration by parts to (H5) or 
(H6) would lead to linear combinations of the Menikoff-Zemach and Noble equations. 

Ives to relate the equations of Noble and Davis and the Schwarz-Christoffel (SC) transforma- 
tion. The use of singularities is also briefly discussed. Finally, in Section 5, the use of explicit 
maps is brought into this framework and illustrated in an example. A method due to Bisshopp is 
also discussed. Most of our derivations have been given elsewhere, but we believe that collecting 
them here will facilitate the comparison of the methods and indicate some new directions of 
investigation. A list of the standard auxiliary functions and the related methods is given in Table 
1. Methods which relate perturbations of the map to perturbations of the boundary, as by 
Dubiner [9], Meiron et al. [35], and Menikoff and Zemach [36, section VII, are not considered 
here. 

Suppose hk, k ~ Z, are the Fourier coefficients of h ~ LZ(T) ,  where T denotes the quotient 
space R/2~rZ. Then 

h = ~_~ hk eik'. 
k~Z 

The conjugation operator K: L2(T) ~ L2(T) is then given in terms of the Fourier series 

K(h( t ) )=- i  Y'~ sgn(k)/~ k e ikt, 
k~Z 

where s g n ( k ) -  1 if k > 0, 0 if k = 0, and - 1  if k < 0. We are also interested in its representa- 
tion as a singular integral operator. If h ~ LI(T), then for almost every t ~ T 

K(h(t)) = ~-~PV f cot( ~ - f  )h('i) d?. (1.1) 

Gutknecht uses the following fundamental  theorem and its converse: 

Theorem 1. l f  h ~ Hi(D), then 
(a) Im h(e i') - Im h(0) = K Re h(ei/) ,  
(b) Re h(e i') - Re h(0) = - K  Im h(ei/) ,  and ifh ~ HI(D c) then 
(ae) Im h(e i ' ) -  Im h ( ~ ) =  - K  Re h(ei/) ,  
(be) Re h(e it) - R e  h ( ~ ) =  K Im h(ei') .  
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He then regards the auxiliary function h as an image of f and its derivatives under an operator 
H on appropriate spaces. In the standard cases listed below, H and H-1 are given by simple 
formulas, e.g. 

h ( z ) = H f ( z ) = l o g  f(,z) and f ( z ) = H - a h ( z ) = z e  h(z). 
Z 

Thus to derive an integral equation we select H and a conjugation relation (a) or (b). The 
choice of H should also assist in satisfying the normalization conditions. By integrating the 
integral form of K by parts, additional integral equations for the inverse boundary map, such as 
those of Menikoff-Zemach and Noble, may be derived. Similar unified approaches to deriving 
integral equations for conformal mapping have been suggested elsewhere, often using the Green's 
function. See, for instance, [37,38,60]. Henrici [22,23] also gives a concise treatment of the 
standard linear integral equations for the inverse boundary correspondence. 

We will use the following results: 

Theorem 2. Let 71 ~ L 1 (T) be of bounded variation and suppose that 7/(t + 6) - ~/(t) = 0(1/log 8) 
a.e. Then KOl( t)) may be represented by a Riemann-Stieltjes integral a.e.: 

K(~( t ) )  = l f l ° g  (1.2) 

Proof. Note that 

7 - t  t - 7  7 - t  
- 2  l o g s i n - - ~ - - = c o t - ~  forO< ~ <or. 

Integrating (1.1) by parts and using our assumption, we have 

r2~r+t-8 I . t -  7 ] 
K ( ~ ( t ) ) =  --1 ] i m [ ( T l ( t + 3 ) - ~ ( t - 3 ) ) l o g s i n ½ 3 +  Jt+a l o g s m ~  d~(7) 

J a~o L 
1 f og s i n ~  --~ d~/(7). [] 

In [51] von Wolfersdorf discusses the solution of equations involving this operator in terms of 
Riemann-Hilbert problems. In light of Wegmann's method, this may be of interest for numerical 
methods. It is convenient to apply the standard results for change of variables and reduction to a 
Riemann integral: 

Suppose that t: T£ ~ T is onto and strictly increasing as a function from [0, L] onto [0, 2~r], 
and ~/~ LI(T) ~ BV(T). Then 

hoglsinL~--~ dTl(T) = f ,oglsin t(l)- t(/")Idrl(t(~-))" 
"r TL I "2 

Note: If t were strictly decreasing the sign would change. 
Next suppose 71' E LI(TL). Then 

fr, loglsint( l) - t( l') d,l( l-) = frLloglsin t( l ) - t( l) lTf ( l-) d 

(1.3) 

(1.4) 
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We will also make  use of the following facts. Here o, 0, )~, 0, and ~, are as in Fig. 1 for 
appropriate  F: 

Fact  1. ( d o / d t ) / O  = (dO/d t ) / cos  ft. 

Proof. Since a is the arclength along the curve F: 3,(0) := O(O)e i°, starlike w.r.t. O, 

eiX(o) = ( do  ) e  iodO 
+ ip d o "  

Therefore 

do  ) dO d t  
+ i0 d t  d-'--'-~ = i cos fl - sin ft. [] 

Note  that we see here that  the c-condition for the Theodorsen  method ,  It)' l /nO[  < c < 1, and 
fl = arg(0'  + io)  - ½,rr implies Jill < ¼~- 

Fact  2. arg f ' ( e  it) = f l( t)  + O( t) - t = X( t) - t - ½~r. 

Fact 3. I f ' ( e  it) I = d o / d t .  

Fact 4. The normalization of the tangent angle )~ is given by fz')~( t) dt  = 2¢r arg f ' ( 0 )  + 3'rr 2. 

Proof.  Use the fact t ha t  arg f ' ( z )  = Im log f ' ( z )  is harmonic  in I zl < 1. [] 

Fact  5. ( 1 / 2  ~r)PVf-rCOt(( t - ? ) /2)  ? d ? = - 2 log 2. 

Proof. See, for instance, Ahlfors [1, p. 170, p rob lem 5]. 

Denot ing the approximat ion to any funct ion g by g, and  setting II g II = It t (ei t )  II ~ below, we 
give some rough estimates of the error II f - f ' l l .  The accuracy estimates may  also be stated in 
terms of the number  N v of Fourier  coefficients needed to achieve a certain m i n i m u m  order-of- 
magni tude  level of accuracy. Zemach  [58,59], has shown that  N F >_ ½ II f '  II. Our estimates will 
express II f '  II in terms of II h '  II or II f - f  II in terms of II h -  ~ II, according to convenience. The 
point  of these estimates is to indicate how the fo rm of the auxiliary funct ion might  influence the 
accuracy of the solution. Two main  features of F affect this accuracy, namely, its local 
smoothness  and, more  dramatically, the global ' th inness '  of A. For  the interior problem for a 
thin region II f '  I1 may be very large, making the problem ill-conditioned. The  accuracy estimates 
in Section 3, for instance, though probably crude, show how II f '  II might  influence the method.  

In the case where f is given by the Taylor series of f ,  t runcated after N terms, and  the 
boundary  curve is analytic, the effect of II f '  II can be seen more  explicitly. Let R be the 
modulous  of the singularity of f nearest the uni t  disk. Then  error estimates of the fo rm 
II f - f ' l l  --- O(R-N/2)  fit the numerical  results for a wide range of N and R; see [54]. Consider  
the three popular  test cases: the families of maps  to the interior of the circle, the inverted ellipse, 
and  the Cassini oval. Normalize the curves to have diameter  2, and  let the thinness a be the 
distance of f(0)  f rom the boundary.  Then R = 1 + 8(a)  and II f '  II = O ( 1 / $ ( a ) ) ,  where $(a)  = 
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O(a), O(a), and O(2ot2), respectively, for the three cases. Thus II f - f l l  = C exp ( - N / ( 2  II f '  II))- 
The effect of II f '  II and Zemach's rule are both seen explicitly here. (Actually, Cauchy estimates 
seem to give a dependence of C on II f '  II, too.) 

We now classify various methods according to their auxiliary functions, give some derivations 
using integration by parts and comment on the standard numerical procedures. Solutions of the 
resulting nonlinear equations are generally obtained by direct or Newton iterations. The 
equations for the interior problem will generally be given, since the exterior problem just changes 
the sign of K. However the normalization may also have to be treated differently. Again we refer 
to Gutknecht for further details. Also F, with its mapping function, f ,  and various explicit 
functions, g, will be normalized so that II g II = II f II = 1. 

(H1) h ( z ) ' = f ( z ) .  

Accuracy: II f - f l l  = II h - h II. 
The method of Chakravarthy and Anderson [7], which discretizes the Cauchy-Rieman equations, 
and the Newton methods of Wegmann [53,54] and Fornberg [10] are included in this family. 
Gutknecht handles the normalization of f for Wegmann's method more easily by including it 
under (H2). 

(H2) h(z ) '= f ( z ) / z .  

Accuracy: II f - f l l  = II h - h II. 
If (a) is selected in Theorem 1, we arrive at the method of Melentiev and Kulisch [34] which 
attempts to solve 

K[p(O(t)) cos(0(/)  - t)] 
8 (t) - t = arctan 

p(O(t)) cos(O(t) - - t )  

by direct iteration. 

2. The equations of Theodorsen and Menikoff-Zemaeh 

(H3) h(z)'=log f ( z '  ~ and h(eit)=log p(8(t)) + i (O(t)-  t), Fstarlikew.r. t .  0. 
g 

Accuracy: [[ f-fi[[ =[[e h [[ [[1 - e ~-h [[ = [[ f [[O( [[ h - /~ [[). 
(a) gives 8( t ) -  t = K[log p(O(t))]. This is the Theodorsen integral equation [43] for the 

interior problem. It can be solved by various direct iteration methods, as in Gutknecht [14,16]. It 
can also be solved by Newton-like methods, as in Gaier [12] and, via certain Riemann-Hilbert 
problems, see Hiibner [26]. See also Vertgeim [50]. 

By applying integration by parts to K, we arrive at the following equation for the inverse 
boundary correspondence for the interior problem: 

lS:l s:l (2.1) Z o g  s i n  t ( 0 )  - t ( ~ )  ' " 8 - t ( 0 ) - -  ogs in  d log p(8(?)) = "rr 2 #(~) " 

The first equality holds since p ~ 0, while the second follows from (1.3), 8(t(8)) - if, and (1.4) 
when p' ~ LI(T). We do not know if this method has ever been tried. 

(b) gives log a(a(t))  - log I f ' ( 0 )  [ = - K [ a ( t )  - t]. 
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Menikoff and Zemach [36] consider this equation and Theodorsen's equation in various 
geometries. However their main contribution involves applying integration by parts to (b). Using 
(1.2) and Fact 5 with 

- 2 log 2 = 1 f r  log s i n ~ - - ~  d0  

to remove the logarithmic singularity for t(O), we get 

s in½( / (0 ) - -~ )0 ) )dO.  (2.2) 
log p(O) - log l f ' ( 0 )  [ = - 1 og sin½(0 

They solve a discrete version of this equation by Newton's method in O(N 3) operations. For thin 
regions, crowding of mesh points presents less of a problem for t(O) than spreading does for 
O(t). Thus fewer points are needed in the F-plane to represent t(O) accurately. Equation (2.1) 
would presumably have the same advantage. The use of the FFT does not seem to be possible in 
either case. 

3. The equations of Timman, Friberg and Noble 

d a  
(H4) h ( z ) : = l o g f ' ( z )  and h(eit)=log--~tt + i ( X ( o ( t ) ) - t - ½ v )  b y F a c t s 2 a n d 3 .  

Accuracy: Here we have f (z )  =f(1)  + f(eh(W)dw, where we integrate along an arbitrary path 
in the unit disk, say the straight line from 1 to z. Then 

I f - f l  ~< (fZleh Ida) I l l -  e ' -h  ]l • 

So 

II f -  f-II = II f '  II O( II h - ~ II)- 

Since also II h - h II = II log f '  - log f '  II, the largest absolute errors are likely to occur where f '  
is the largest or smallest. The latter case may occur where there are zeros of f '  near the disk, i.e. 
where the conformality of the map breaks down. Wegmann [54] reports some numerical evidence 
of loss of accuracy in this latter case for his method which, however, uses h := f. 

(a) h(o(t))  - t - ½~r = K[log(da/dt)]. This might make sense for a convex F parametrized by 
?~. 

(b) log ( d o / d t ) -  log l f ' (0 )  l - - - g [ X ( a ( t ) ) -  t-½"rr]. This is the analog for the interior 
problem of the equation of Timman [23,46]. See also James [29] and Birkhoff, Young and 
Zarantello [5]. This equation is not so useful, computationally, since there is no general way to 
impose the normalization condition, f(0) -- 0. The exterior problem can be handled, though, and 
the interior problem can always be treated as an exterior problem with two inversions of the 
plane. Thus Gutknecht suggests the following auxiliary function, which is a combination of (H3) 
and (H4): 

(H5) h ( z ) = l o g  z2f'(z-------~) =log  f ' ( z ) -  2 log f ( z )  . 
f 2 ( z  ) z 
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Accuracy: Since 

we have 

1 

f ) J, w J 

I / - f - I  ~ leh/w~ldo II1 - e h -~ l l  ~ I f f l  IIf ' /f  ~ II O ( l l h - h l l )  

Therefore II f - f ' l l  = O( II f '  II II h - ~ll/a2), where a = II f II/min I f ( z )  I for I zl = 1. 
(H5) is similar to the function which gives Friberg's method: 

dO//dt + ifl. 
COS f l  

(H6) h(z) , zf'(z) :=log f - ~  =log f ' ( z ) - l o g f  z )  (z 
and h(eit) = log 

Accuracy: Here 

f(z) = f ( 1 ) z  e x p ( f f  e h ~ ' ' -  l w  dw).  

Therefore, with f-(1) = f(1), 

I f - f l  -< O( I f l  IIh -/~11 211f'/fll) 
Therefore II f - f ' l l  -- O( II f '  II II h - ~ II/a), with a as defined above. 

(a) gives 

[ ( dO(t)/dt )] 
fl(O(t)) = K log cos fl(O(t)) " 

This equation does not appear to be solvable by direct iteration, since it does not seem possible 
to parametrize F globally by ft. 

(b) gives 

log(dO/dr) = log(cos f l (0( t ) ) )  - K[  fl(O(t))] .  

This is Friberg's equation [11]. The equations of Timman and Friberg are solved by direct 
iteration. For remarks on convergence see Gutknecht. The results of Friberg's analysis are given 
in Warschawski [52]. The conditions for (linear) convergence are that I/ l, I/ 'l and [fl"[  are all 

c <-~r. The first of these is just the c-condition for the Theodorsen equation. As we note 
below, Friberg's equation is the sum of Timman and (H3b). Experiments by Halsey [19] indicate 
that Timman's method converges much better than Theodorsen's for thin regions. This suggests 
that an c-condition on fl might not be necessary, but leaves open the need for an c-condition on 
fl '  and possible poor performance of Timman's method for a bumpy near-circle, where fl '  is 
large. It might be interesting to look at such a near-circle with [fl [ < c < ~,r, but I/3'1 > 
where Theodorsen's method would succeed but Timman's method might fail. Kaiser [30] has 
done further analysis of convergence for this case. 

Moreover, the asymptotic analysis of Dubiner [9] and Zemach [58] shows that whereas do~dr 
(or d 0 / d t )  may be very large for thin regions, log da/dt remains well-behaved. The good 
convergence properties of the discrete Timman equation will not overcome the need for large N 
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to represent thin regions accurately, i.e., Zemach's N v >_ ½do/dt  rule remains true. See also 
Meiron, Israeli and Orszag [35]. 

Since o(t) in the method of Timman and O(t) in Friberg's are updated in each step by 
integrating d o / d t  and dO/dt > 0, respectively, the disordering of points which may affect other 
methods such as Theodorsen, Fornberg, or Wegmann is avoided; see Halsey [19]. Newton 
iterations based on solving Riemann-Hilbert problems may also be possible here. Timman's 
method may also be useful for providing a good initial guess for quadratically convergent 
methods such as Wegmann's or Fornberg's when the region is thin, thus avoiding additional 
coding for explicit maps or continuation. The main subroutines required by the FFT methods are 
the FFT routine and a subroutine for K. 

As we noted, since K is linear, Timman's equation, 

log(do/d t ) -  l og l f ' ( 0 )  l = - K ( X -  t -  ½~r) 

combined with (H3b), 

- l o g  p + log[ f ' (0 )  [ = K( O- t) 
gives 

log(do/dt) - log  p = -K( /~ ) ,  

and Fact 1 gives Friberg's equation, 

log(d 0 /d  t) - log(cos B ) = - K (/3). 

Taking such linear combinations of the integral equations is clearly equivalent to taking linear 
combinations of their auxiliary functions and then applying Theorem 1. We may then apply 
integration by parts to K. Here, the two cases of interest are the Menikoff-Zemach equation, 
using (H3), and the Noble equation (3.1), using (H4). Applying integration by parts with (H5) or 
(H6) will just result in linear combinations of these equations; see Table 1. The Noble equation 
appears in various forms in Noble [39], Andersen et al. [2], and Woods [57]: 

do - -  frlog s i n ~  --~ dX(?). (3.1) lOg-d- 7 - l o g l f ' ( 0 ) I  = - 2  log 2 1 

If dX/dt ~ LI(T), we may use (1.3) and (1.4) and d X ( o ) / d o  -- x(o), the curvature of the curve 
F of length L, to rewrite (3.1) as 

d t ( a )  1 t ( o ) - t ( 6 )  
log do + l ° g l f ' ( 0 )  l = 2 1 o g 2 +  -[or ~7"Ll°glsin ~- (6) dr .  (3.2) 

If X is strictly increasing, we get 

dt 1 fl s i n ½ ( t ( X ) - t ( X ) )  dX 
log~--g ° + log l f ' ( 0 )  I -- ~ og sin½(X X) 

= l f l o g  s i n ½ ( / ( o ) - / ( 6 ) )  x(6) dr .  (3.3) 
• r Jr, sin½(?t(o) ?t(6)) 

If a parametrization o f / "  by X is known, discretizing the first line of (3.3) may advantageously 
distribute more mesh points along sections of /" of greatest curvature. We may ask whether this 
might be more accurate than the second variant in (3.3), where mesh points would be distributed 
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evenly in a. For  a related point  of view see Hoidn  [25], where a reparametr izat ion is used to treat 
comers  with the Symm's  equation.  Dubiner  [9] also alludes to (3.3). For  an applicat ion of this 
equat ion see [35, p. 354, after Eq. 3.4]. 

The  problem of satisfying the normalizat ion condi t ion f(0)---0,  which effects the interior 
version of the T i m m a n  equation,  would seem to occur here too. However  (3.1) is of independent  
interest, since we may  use it to derive a form of the Schwarz-Chris toffe l  t ransformation.  Suppose 
F is a polygon with n comers  at a~ = a(t~) with interior angles ~r - A ~ ,  i = 1 , . . . ,  n. Then for 
t ~ t~ and the change in the tangent angle [ AX~I < ~r we have 

l o g ~ t  - l o g l f ' ( 0 )  [ + 2  log 2 =  - l  f l o g  s i n ~  -~ d?~(?) 

_ ~ - t i  1 ~,  log sin A~ i. 
2 'ff i=1 

This gives 

d e  ~ l - t. -ax,/~, 
d--7 = ¼ I f ' ( 0 )  [ l ~ sin = - - ~  . (3.4) 

i--I 

Since Aa i = fti'+~(da/dt)dt are the known lengths of the sides of F, i = 1 . . . .  , n and tn+ i = t~, we 
have the following n equations for the n + 1 parameters  [ f ' ( 0 )  [, t I . . . .  , t n 

rti+l[ . t --  t i [-AXi/'~ 
Aa, = ¼ I f ' ( 0 )  I Jo s m ~  I d t, i = 1 , . . . ,  n. 

ti 

Note  for I AX~I < ~r the singularity is integrable; see [2, p. 154]. Also see Koppenfels  and 
Stal lmann [33, p. 159] for a connect ion to Theodorsen ' s  equation.  

4. The Ires form 

(H7) h( z )  "= l o g ( f ' ( z ) / g ( z ) ) ,  where g ( z )  is given explicitly. 

Thus  f ' ( z )  = g(z)e  h(z), a form suggested by Ives in his interesting survey [28]. This case includes 
Schwarz-Chris toffel  (SC) and the cont inuous  SC of Davis [8,42] when g(z)  is a product  of SC 
factors. 

Accuracy: f ( z )  = f(O) + f~g(w)eh(W)dw, so 

f-f'[l= fo?'(w)( 1-exp(h(w)-h(w)))dw]~<O(Itf'llllh-hll)- II 

We now establish some relationships between the Schwarz-Chris toffe l  t ransformation,  the 
Davis equation, the Ives form, and the Noble  equation.  

S C = D a v i s .  Let /~ be a polygon with n comers  on /". Again let A~, i be the change in the 
tangent  angle at the comers  of /" which should include any comers  of F. The  SC map )r for r 
maps  the unknow n  zi to these comers  f(3~), i = 1 , . . . ,  n and  satisfies, for some constant  c, 

d f  ( 1 ~ l o g ( z - ~ i ) A h i ) .  
dz  = C e x p  - ~ i = x  
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Taking the limit as n ~ ~ ,  P ---, F and max [ Yg - zi-  1 [ -* 0 we obtain Davis'  equat ion for f :  

. ( ) d---~ = C e x p  - o g ( z - f )  dK . (4.1) 

The numerical  problem is to determine the ~g for the case of the po lygon and X(z) for the case 
of the more  general curve F. The Riemann-St ie l t jes  integral incorporates  j u m p s  in ;k as the 
comers.  Davis uses composi te  techniques, assuming ~ to be quadratic,  to evaluate the integral 
explicitly on the smooth  sections. 

Davis =~ Ioes. Suppose Y has m comers ,  zi, i = 1 , . . . ,  m. Davis shows how the product ,  g(z ) ,  
of the SC factors for the comers  can be factored out  of (4.1), to get 

- ( )) df=c(z-z~)-Ax'/~'exp - - -  l og (z -  ~) dX(f 
d z  'IT i ~  z~ 

where zm+ 1 = z 1. Thus f is of the form 

d f / d z  = g ( z )  e h(~). (4.2) 

This is the so called 1-step form suggested by Ives as the me thod  of choice of the U.S. 
aerodynamics communi ty  over composi te  methods  (below) if the F F T  is used to compute  h(z) .  
Bauer et al. [3] use this form for the exterior map  to an airfoil with a c o m e r  at the trailing edge. 
Other choices of g(z )  are given in Ives' survey. 

Apparent ly  general behavior may  be resolved by using g(z)  to place singularities on or near 
appropriate  sections of F. F o m b e r g  (private communica t ion)  has suggested treating the mapping  
problem by distributing singularities a round the uni t  disk. Papamichael  and  his coworkers, e.g. 
[40], have improved the accuracy of certain kernel methods  for the inverse map  by exact 
t reatment  of singularities. It might  be expected that  something similar can be done  here, e.g. by 
choosing h( z )  ,=- l o g ( f ( z ) / g ( z ) ) .  The f ( z )  = g(z )e  h(,). If, for example, one wishes to map  to the 
inverted ellipse where the singularities z± are known,  one could choose 

g ( z )  = z(1 - z / z + ) - 1 ( 1  - z / z _  ) -1 . 

In this case h would be constant.  Even if this scheme worked in test cases, a method  for 
approximating the dominan t  singularities of f would be needed for general analyt ic/" ,  and some 
similar scheme would be needed for the practical case w h e n / "  is, say, a cubic spline. 

Davis =, Noble (see [2]): Consider  the Davis equation:  

l o g / ' ( e  i') = log C -  f og(e"- e i~) dh(~') .  (4.3) 

Using Fact 4 and the branch of log with arg x = -~r  for x < 0, a calculat ion gives 

f l o g ( e i t - e i ~ ) d X ( ' f ) =  f : o g s i n ~ 2 - t - l d h ( F ) - i ' r r h ( t ) + i ~ t + ~ r 2 1 o g 2  

i ~r 2 
+i ' t r2h(0)  2 i~r Arg f ' ( 0 ) .  (4.4) 

We also have 

log C = log f ' ( 0 )  - i2~r + i2X(2cr) - i2 Arg f ' ( 0 )  - i3~r. (4.5) 

Since log f ' ( e  it) = l o g ( d o / d 0  + i(X(t)  - t - ½,rr), we obtain Noble 's  equat ion  (3.1) by combin-  
ing (4.3), (4.4), and (4.5). 
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5. The use of explicit maps 

We next suggest two forms of h encompassng the classical technique of composition with 
explicit maps, g, which may be computed exactly. 

(Ha) h(z ) :=(go  f ) (z ) .  

Accuracy: 11 f - f ' [ [  = [1 g-X o h - g - 1 .  ~ l[ ~< 11 g - l ,  I111 h - h 11 
Thus the accuracy of f will be indicated by II g - l ,  II II h '  II is this case. Here g may be some 

composition of explicit maps such as Koebe, osculation, Karman-Trefftz,  corner-removers, etc., 
chosen, e.g. by Grassmann's algorithm [13], to map A to a more nearly circular region. One could 
even imagine g-1 as a composition of very accurate Taylor series maps. For a thin region and 
fixed N the Taylor series map h to the near-circle should be more accurate than the Taylor series 
map to the region. Unfortunately this extra accuracy is lost in amplification by II g- I ' l l -  
However, the use of explicit maps can, in our experience, replace continuation. We intend to 
report some experiments composing the Grassmann maps with the Fourier series maps of 
Fornberg and Wegmann in a subsequent paper. 

(H9) h ( z ) ' = ( f . g ) ( z ) .  
Here g : D ---, D conformally, and is thus a fractional linear transformation 

Accuracy: II f - f i l L  --- II h (g  -1) - ~(g-1)II -- II h - ~ li- 
The accuracy of f here will be indicated just by II h '  II, since g is exact. 
The example of Fig. 1 illustrates the comparison of (H1), (H8) and (H9) with known explicit 

maps. We wish to find f mapping the unit disk to the interior of the inverted ellipse of thinness 
a, but with f(  - 1 + r )  = 0 and f ' (  - 1 + r )  > 0 for small a and ft. f is the known composite 
map f (z)  = g(h(z)) where 

z + l - f l  
h(z)  = 

l + ( 1 - f l ) z '  
the fractional linear transformation and 

2az 
g(z )  = 

(1 + a ) -  ( 1 - a ) z  2' 

e it f 

f(O)=O 
f ' (O)>O . . . .  

zoplane 
r:v(n) (q= 0,o,...) 
e.g.  y(O) = p(e) e ie 

F - p lane  

Fig. 1. Numerical conformal mapping problem: find boundary correspondence, e.g. o(t). 
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the well-known map to the interior of an ellipse of major  axis 1 / a  and minor axis 1, inverted in 
the unit circle. These functions have maximum derivatives at - 1  of O(1 / f l )  and O(1 / a ) ,  
respectively. 

Using (HI)  we find that the accuracy of  a Taylor  series representation f" of f is given by 

II f '  11 = f ' (  - 1) = g ' (  - 1)h '(  - 1) = O(1 / (a f l ) ) .  
Using (HS) the circle map is represented by  its Taylor  series h. Its accuracy is [[ h '  II = h '(  - 1) 

= O(1 / f l )  and it is magnified by II g'  II = g ' ( - 1 ) =  O ( 1 / a ) .  The accuracy of f =  g o h is thus 
II g '  II II h '  II = O(1 / (a f l ) ) ,  the same as (H1). 

Using (H9) the exact map g is the circle map and h is the Taylor  series map for the inverted 
ellipse. The error in g will be negligible and the accuracy of  h will be [[ h '  [[ -- O(1 / a ) .  So the 
accuracy of f = h o g is O(1 / a ) ,  a clear improvement  for small ft. 

There does not seem to be any way to exploit the third normalization condition unless it is not 
required and the circle can be  rotated arbitrarily so that the maximum and minimum derivatives 
line up. Presumably the best strategy using the circle maps  first would be  to find the point  w o in 
the target region farthest from the boundary  and map  the origin to it. w 0 is such that 

s u p [ w 0 - z [ =  inf s u p [ w - z [ .  
z ~ F  w~A z ~ F  

If the desired normalization is f (Zo)  = Wo, z o ~ O, we can map z 0 to 0 with a linear transforma- 
tion. If we want f (0)  -- w 1 ~ w o we can find the map with h(0) = w o and then find z 1 -- h - l ( w l )  
by applying Newton 's  method to h(zz )  = w 1. Finally map  0 to z 1 by  a linear transformation. 

It is not clear to this author whether the above idea can be  implemented,  and whether it would 
yield the smallest [[ f '  [[ in all cases. For  near circles, Ives [27] computes  w 0 as the centroid. To 

H1 

1 
Approximate 

-|G 

Accuracy of f :  maxff'[ = Ig'(-1)h'(-1)[ = O(l/a(~) 

H8 

Approximate Exact 
h' = 0(1/13) ~ g'  = 0(l/a) 

Accuracy of f = goh: maxlgq[h'L = O(1/al~) 

N~ 

Approximate 
Exact ~ h' = O(1/a) - -  

Accuracy of f = hog: maxjh'[ = O(1/a), the best. 

Fig. 2. Comparison on (H1), (H8) and (H9). 
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g 

Generalized 
Menikoff-Zemach 

Map 

Fig. 3. Map to a thin region. 

characterize the point w 0 for quite odd regions would probably be unnecessary, since such a case 
would most likely be beyond the range of Fourier series maps anyway. A method proposed by 
Bisshopp [6] seems to find this best map f.  He solves a least squares problem using FFT's, 

E 2= l i m f 2 ~ ' l f ( r e i t ) - y ( o ( t ) ) 1 2  dt ,  
r ~ l  "0 

with 

f ( r  f i t)  = 2 ak rk elk'. 
k~O 

The conditions aE/Oa k -- 0 give values of the a k. The  vanishing of the first variation of E 2 leads 
to a Newton method for o(t) .  Once f is found the desired normalization may be satisfied with 
circle maps. The normalization may also be imposed from the outset, but Bisshopp observes that 
this leads to loss of accuracy. Two questions suggest themselves. Is f(0) for Bisshopp's map equal 
to w 0 above? Can Bisshopp's method be posed as a Riemann-Hilbert  problem and solved in 
Wegmann's fashion? 

The examples above indicate that it is best to use explicit maps first, since otherwise errors in 
the approximate map will just be amplified due to spreading by the explicit map. Menikoff and 
Zemach [37] give a generalization of their methods to maps between arbitrary regions. This 
suggests the following strategy for mapping from D to a thin region F. Use for g, for instance 
the known explicit map to the ellipse, or the inverted Grassmann maps for F, follow these by the 
generalized Menikoff-Zemach map between the ellipse as the image of the circle under the 
inverted Grassmann maps and the region F, as in Fig. 2. Severe crowding may then be avoided 
in the Menikoff-Zemach map. Another good strategy might be to start with canonical regions 
which avoid crowding. However, in this case fast methods may be lost. 
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