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Abstract.  We give simplified derivations of Fornberg-like methods for conformal mapping of 
simply and multiply connected regions.  The computational domains are circular domains and the 
derivations are based on Fourier series leading to conditions for analytic extension of boundary 
values to the computational domain.  Linearization of these conditions with respect to the boundary 
correspondences and conformal moduli lead to Newton methods for approximating the mapping 
function.  The linear systems can be solved by the conjugate gradient method. 

 
 
1. Introduction 

 
A great variety of numerical methods for efficiently computing conformal maps between 
various simply and multiply connected domains and conformally equivalent canonical 
domains have been developed in the past few decades.  Thorough introductions to many 
of these methods can be found in the texts by Gaier [9] and Henrici [10] and a recent 
overview is given in a forthcoming survey by Wegmann [18].  Most general methods for 
numerical conformal mapping compute the boundary correspondences between the 
canonical and target domains and the conformal moduli.  Canonical domains whose 
boundaries are circles are popular alternatives, since fast Fourier series methods can be 
used in the computation of the boundary correspondences.  In this case, finding the 
conformal moduli amounts to calculating the centers and radii of conformally equivalent 
circular domains under certain normalizations of the mapping functions. Quadratically 
convergent Newton-like methods for solving these problems are particularly efficient. 
There are two main approaches to deriving such methods which have developed in 
parallel and use essentially the same linearization. One approach, due mainly to 
Wegmann, solves the inner linear systems for the Newton updates of the boundary 
correspondences and moduli as Riemann-Hilbert boundary value problems for the 
circular domains.  The other approach, first proposed by Fornberg [7] for the simply 
connected case and extended by DeLillo et al., derives the inner linear systems from 
conditions on the Fourier (Laurent) coefficients which guarantee analytic extension of 
functions on the circles into the computational domain.  Both approaches have been 
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developed for the following canonical domains: the unit disk [7], [13], [6], the annulus 
[6], [12], [14], the ellipse [3], [4], [15], [11] and multiply�connected circular domains     
[5], [11], [1], [16], [17].  Iterative methods such as the conjugate gradient method can be 
used to solve the inner linear systems efficiently in most cases. 
 The purpose of this paper is to present a brief overview of the Fornberg-like 
methods.  We will concentrate mainly on giving simplified derivations of the conditions 
on the Laurent coefficients for analytic extension and on the linearization.  The details of 
the discretization and the numerical procedures and examples can be found in the 
references.  Using FFTs and discretization by N-point trigonometric interpolation leads to 
computational costs of  for the simply and doubly connected maps and 

 for the multiply connected maps.  We discuss the disk map in Section 2, the 
annulus map in Section 3, the ellipse map in Section 4, and the multiply connected map 
in Section 5. 
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2.  Conformal mapping of the unit disk 
�
We wish to find the conformal map f from the interior of the unit disk D onto the interior  

 of a Jordan curve Ω .0,)(: LSS <≤Γ γ   (The parameter S is often taken to be 
arclength). We assume here and below that the boundary curves γ  are Hölder 
continuously differentiable with nonvanishing derivative and so contain no corners. The 
normalization imposed on f  is 
 
 0)0(,0)0( >′= ff   (or )0()1( γ=f  fixed). (1) 
�
Finding f  is equivalent to finding the boundary correspondence function )(θS where 
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then, by [[10], Sec. 14.3.I],  f extends analytically into D if and only if 
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That is, the negative-indexed Fourier coefficients of  must vanish.  Note that the 
condition for  is obtained by applying the uniqueness condition 
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(For the exterior case [6], we fix ∞=∞)(f  and the positive indexed coefficients of 
 must vanish.)  We denote these conditions on the Fourier coefficients of f 

symbolically as  
zzf /)(

 
 .0=Pf    (5) 
 
Here, for example, P can be factored as FIP −=  where F is the Fourier transform, 

 are the Laurent coefficients, and TaaaFf ),,,,( 101−= ),0,0,1,1,( diag=−I  

zeros the positive–indexed coefficients,  .),0,0,,,( 12
TaaFfIPf −−− ==

 In order to compute a real correction  to the current approximation  

to the exact 
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,)(θS  we linearize about  at the kth Newton step as follows: )()( θkS
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Using  real and the analyticity conditions (5) gives a linear equation )()( θkU
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for the determination of   In [6] it is shown how (7) can be converted to a second 
kind integral equation, discretized with the normalization added, and the resulting linear 
system solved efficiently with the conjugate gradient method.  The Newton update is then 
given by  

.)(kU
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3.  Mapping of the annulus to a bounded doubly connected domain 
 
In this section we will derive the Fornberg-like method for mapping an annulus D to a 
bounded, doubly connected region  as in [6].  Fornberg extended his method to doubly 
connected regions using a system of equations [[8], eq. (6)] that are closely related to the 
analyticity conditions derived in this section.  He uses a linearly convergent method of 
successive approximation to solve this system.  Here and in [6], we show how to linearize 
these equations to get a quadratically convergent Newton-like method. 

Ω

 According to a standard theorem, e.g. [[10], p. 445], for a given Ω  there exists a 
unique real number ,10, << ρρ  such that the annulus 1: << zD ρ  can be 
mapped conformally by a function  f onto   If the outer boundaries correspond to each 
other, then f is determined up to a rotation of the annulus.  The number 

.Ω
ρ  is called the 

conformal modulus of the region  and is uniquely determined by Ω .Ω   Thus, 
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determining ρ  is part of the problem.   The mapping  f is uniquely determined by fixing 
a boundary point. 
 Let the target region  be bounded by two Jordan curves, the outer curve Ω

)(: 111 SγΓ  and the inner curve .)(: 222 SγΓ   Our problem then is to find the boundary 
correspondences, )(1 θS  and ,)(2 θS  and the conformal modulus ,ρ  such that  is 
analytic in the annulus 

)(zf
1: << zD ρ  with 
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then the necessary and sufficient conditions [6] for f to be analytic in D are  
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(If ,1 ρ<< z  we have  instead.)  We will denote these conditions 
symbolically as 

kk
k ab =ρ
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This linearization was first proposed in [12].  Using the fact that  are 
real and the analyticity conditions (12), gives an equation 
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for the determination of   In [6] it is shown how (14) can be discretized 
and solved efficiently with conjugate gradient.  The Newton update is then given by  
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4.  Mapping of an ellipse to an elongated region 
 
One of the fundamental problems with the disk map is a severe ill-conditioning known as 
the crowding phenomonen; see [2] and references therein.  The map from the disk to a 
region which is elongated in one direction has relative distortions which vary 
exponentially with the “aspect ratio” of the region, requiring many Fourier components 
for resolution.  A better conditioned map can be found by using a similarly elongated 
ellipse as the canonical domain [3], [4], [15]. 
 We now give a simplified derivation of the method based on the conditions for the 
annulus above; see [11].  This derivation is simpler than that in [3], [4] which was based 
on Chebyshev polynomials.  Let ζζζ /1)( +=Ψ  be the familiar Joukowski map which 

maps   onto an ellipse   We want to find conditions on values of     
f on the boundary of the ellipse that guarantee analytic extension of f into the interior.  Let 
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Note that  maps the annulus ))(( zf Ψ ρ<< z1  through the elliptical domain slit along 

 onto the “slit” elongated region   From Section 3 above, we have ]2,2[− .Ω
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In order to “close the slit”, we force f  to satisfy 
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which leads to 
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Combining (17) and (19) gives us the desired analyticity conditions 
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 We still have to incorporate normalization conditions into our linear system.                 
We will discuss two choices for normalization:   (i)  0)0( =f  and one boundary point 
fixed, and (ii) 3 boundary points fixed. 
 First, consider the condition   Then .0)0( =f
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Adding these two equations gives [[3], eq. (2.5)] 
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One boundary point can then be fixed, e.g., ,)0()1( γ=f  by setting .0)0( =S  
 Alternatively, three boundary points, say ,))/1((,)/1( ρρρρ −+ iff  and 

,)/1( ρρ −−f can be fixed by fixing .)(,)2/(,)0( ππ SSS  
 The analyticity conditions, normalization, and linearization lead to equations similar 
to the simply connected case, eqs. (5), (6), (7), (8), above.  Details are given in [3], [4].  
In [4], a similar map is developed for the cross-shaped region using Faber polynomials. 
 
 
5.  Mapping of multiply connected circle domains 
 
In this section, we will derive a simpler, symmetrized version of the method in [5], [11] 
for computing the conformal map f from an exterior n-connected circle domain to a 
domain exterior to n smooth Jordan curves.  In [1], a derivation of this method is given 
following results in [5], [11] and further analysis and numerical examples are presented.  
Here, we give a simpler derivation based on series calculations suggested by Wegmann 
[19].  Methods for computing f based on Riemann-Hilbert problems are discussed in 
[[16], [17], [18]]. 
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 The conformal map f maps the complement, D, of n closed nonintersecting disks, 
 onto a region Ω  exterior to n smooth Jordan curves, ,1, nkDk ≤≤ nkk ≤≤Γ 1,  

with a simple pole at .)(∞, ∞=∞ f   The curves kΓ  and their interiors are 
nonintersecting.  n is the connectivity of the Ω  and D.  We assume that .   The 
circular disks  have boundaries  with centers  and radii 

2≥n

kD kC kz .1, nkk ≤≤ρ   The 
boundary of D is ,1 nCCC ++=  and the boundary of  Ω  is ,1 nΓ++Γ=Γ  
where )(: kkk SγΓ  is smooth (no corners) and .)(f kkC Γ=   The parameter  need not 
be arclength. 

kS

 According to the standard theorem, e.g., [[10], p. 488], given ,Ω  the circular domain 
D and the mapping function  f, normalized by  
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near , are uniquely determined. (In [5], the normalization ∞ )/1()( zOBAzzf ++=  
was used and A and B were determined by fixing four circle parameters.)  The numerical 
problem is, therefore, to determine the boundary correspondence functions )(θkS  and the 
centers  and  radii   of the circles  such that kz kr ,kC
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where f is analytic in D and satisfies (22). 
 From [[5], eq. (3)], the map f  then has the representation 
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Consider the Fourier series from [[5], Theorem 5], 
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Inserting (24) into (26), we have 
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Since the functions  for  are analytic in  the last term in (27) contributes 

only Fourier-terms  with   Comparison of coefficients in (26) and (27) yields 
lH kl ≠ kD

θije .0≥j
 
 .0for      <= jab kjkj    (28) 

 
Comparison of the remaining coefficients in (25) and (26) gives our analyticity 
conditions (30), as follows.  Using the binomial series 
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one can calculate, from the Laurent series (25) of  the Taylor series of  at the 
point   Comparison of coefficients in (27) using (28) yields 
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for   For  and  one has to add  and .2≥j 0=j 1=j kz ,kρ  respectively, to the right 
hand side of (30). 
 In [1], it is shown that (30) are just a symmetrized version of the conditions in [[5], 
Theorem 5] where the condition for  is used for each k with  replacing        
This can be seen by noting that, for  in [5], we have 
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Hence, (30) can be rewritten as 
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where ,, 10 kk xzx ρ==  and  for  We denote these conditions 
symbolically as 
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 As in [5], it is now necessary to also linearize about the  szk '
 

  ( ) ( )θθ ρδρρδ i
kk

i
kkkk ezfezzf +≈+++ )(  

 ( )( )θθ δρδρ i
kk

i
kk ezezf ++′+  (34) 

 
giving 

 
 ( ) ( )( )θθθ δρδρρ im

k
m

k
im

k
m

k
im

k
m

k ezezfezf )()()()()()( ++′++    

 ( ) ( ) )()()( )()()( θθγθγ m
k

m
kk

m
kk USS ′+=   (35) 

 
for the mth Newton step.   This linearization is rigorously justified in [16]. 
 Representing the unknown updates nkzzU kkkk ,,1,)( imag,)(real ,, =ρ  by U, 
we can derive a linear system for U which we denote symbolically as  
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The details of the discretization, setup, and solution of this system by the conjugate 
gradient method are given in [1] and are similar to [5].  We will not present them here.  
The mth Newton updates are 
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