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Abstract We discuss recently developed numerics for the Schwarz–Christoffel trans-
formation for unbounded multiply connected domains. The original infinite product
representation for the derivative of the mapping function is replaced by a finite fac-
torization where the inner factors satisfy certain boundary conditions derived here.
Least squares approximations based on Laurent series are used to satisfy the boundary
conditions. This results in a much more efficient method than the original method
based on reflections making the accurate mapping of domains of higher connectivity
feasible.
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1 Introduction

In this paper we present recent work on an alternate representation and computation
of the Schwarz–Christoffel transformations for multiply connected domains given
in [8]. The transformations were based on infinite sequences of iterated reflections,
which generated infinite products in each mapping formula. We will only discuss the
unbounded case here.

The unbounded polygonal domain mapping is given in [8] by the formula

f (z) = A

z∫ m∏
j=1

K j∏
k=1

⎡
⎢⎢⎣

∞∏
n=0

ν∈σn( j)

(
ζ − zk,ν j

ζ − sν j

)
⎤
⎥⎥⎦
βk, j

dζ + B. (1)

Here, f is the conformal map f : � → P from the domain � exterior to m
non-overlapping circles, C j , j = 1, . . . ,m with centers c j = s j and radii r j , to the
domain P exterior to m bounded, mutually exterior polygons, � j = f (C j ). The kth
prevertex zk, j ∈ C j , k = 1, . . . , K j , maps to the kth corner on the j th polygon,
wk, j = f (zk, j ) ∈ � j . Also f (∞) = ∞. The exponents βk, jπ are the turning angles

at the vertices of ∂P with
∑K j

k=1 βk, j = 2 for any fixed j . The boundaries of the circle
and polygon domains are oriented such that the domain is to the right as one traces the
boundary. The zk,ν j are generated by reflections of the prevertex points on ∂�. The
sν j are generated by the point at infinity and its reflections.

Convergence of infinite products was proven in [8] for cases where the circles
are sufficiently well-separated. In [10,15], a numerical method was developed for
computing the maps for both bounded and unbounded domains based on truncating the
infinite products and the sufficient conditions for convergence were found to be far from
necessary, in practice. There do not appear to be any simple conditions which are both
necessary and sufficient for convergence. Indeed, examples of non-convergence can
be constructed for the equivalent Poincare series, and for practical computations with
m much greater than about 3 or 4 the geometric increase in the number of terms with
each level of reflection renders the formula impractical. Therefore, for both theoretical
and computational reasons, it is desirable to have a formula for general domains in
terms of more elementary functions which are always defined and may be more easily
computed. In this paper, we develop such a more efficient approach. We show that
the inner infinite products in the integrand of (1) are maps to slit domains satisfying
certain boundary conditions and we use a least squares approach to find Laurent series
which satisfy the boundary conditions. This method was used by the authors in [7,9]
following, for instance, in [4,13,18].
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Schwarz–Christoffel Maps for Multiply Connected Domains 309

Other possible factorizations were discussed in [3,9]. The Schwarz–Christoffel
transformations for unbounded multiply connected domains can also be written in
terms of finite products of Schottky–Klein prime functions [2]. The prime functions can
also be computed using Laurent series [4]. We plan to compare the various approaches
computationally and discuss other potential numerical and theoretical improvements
in future work. In addition, it should be possible to develop similar methods for the
bounded case [5]. However, the significant increase in efficiency, accuracy, and con-
nectivity afforded by our current approach merits reporting at this time.

This paper is organized as follows. In Sect. 2, we introduce notation and basic
useful information. In Sect. 3, we explore replacing the infinite product of reflections
in (1) with finite products of slit maps; these slit maps are then computed using a least
squares method. In Sect. 4, we briefly recall the numerical setup for the parameter
problem and introduce an accuracy measurement. Finally, in Sect. 5, we present some
numerical examples.

2 Preliminaries

We shall introduce notation, recall basic facts about reflections in circles, and state-
related useful information. Complete discussions are given in [8,10], and in [9] with
a sample reflection code. As already mentioned, w = f (z) is a conformal map f :
� → P from a circle domain to a polygonal domain of connectivity m, with c j and
r j denoting the centers and radii, respectively, of the boundary circles C j of �.

The reflection of a point z through a circle C with center c and radius r is given by

z∗ = ρC (z) := c + r2

z − c
,

i.e., z and z∗ are symmetric points with respect to the circle C . If z ∈ C then z∗ = z,
so that trivially ρC (C) = C . Given any two mutually exclusive circles Cτ ,Cλ, the
reflection of Cτ through Cλ is denoted Cλτ = ρλ(Cτ ) := ρCλ(Cτ ).

Lemma 1 [8, Prop. 1]

ρλ(ρτ (z)) = ρλτ (ρλ(z)). (2)

Proof Recall that Möbius transformations preserve reflections in circles and straight
lines, so let Cλ be the real axis, where reflection is just complex conjugation. Then

ρλ(ρτ (z)) = ρτ (z) = ρλτ (z) = ρλτ (ρλ(z)).

��
Note that the order in which reflections are carried out is important, i.e., in general

ρλ(ρτ (z)) �= ρτ (ρλ(z)).
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310 T. K. DeLillo et al.

Definition 1 The set of multi-indices ν of length |ν| = n > 0 is denoted

σn ={ν1ν2 · · · νn : 1 ≤ νi ≤ m for i =1, . . . , n; and νi �= νi+1 for i =1, . . . , n − 1} ,

with σ0 := φ. (If ν ∈ σ0, then we write for convenience ν j = j). Also

σn( j) = {ν ∈ σn : νn �= j} ,

denotes sequences in σn whose last factor never equals j .

An arbitrary reflected circle is denoted by Cν with a multi-index ν labeling the
sequence of reflections. Consider for example an unbounded circle domain with m = 3.
For |ν| = 3, three levels of reflection, the set of multi-indices would be

σ3 = {121, 123, 131, 132, 212, 213, 231, 232, 312, 313, 321, 323}

with

σ3(1) = {123, 132, 212, 213, 232, 312, 313, 323} .

The reflections of circles C2 and C3 through circle C1 are C12 = ρ1(C2) and
C13 = ρ1(C3), respectively. The reflection process is continued with, for instance,
the circle C1 reflected through C12 for C121 = ρ12(C1) = ρ12(ρ1(C1)) = ρ1(ρ2(C1))

by an application of (2), and C13 reflected through C12 for C123 = ρ12(C13) =
ρ12(ρ1(C3)) = ρ1(ρ2(C3)), etc. See Fig. 1. Some care is required to reconstruct the
original sequence of reflections from the index ν, as illustrated by C123. However note
that, more generally, Cν = Cν1ν2···νn is in the interior of Cν1 and arises from a sequence
of reflections of Cνn .

Use of the radii and centers of the reflected circles, as well as the reflections of the
centers of the boundary circles of �, will be required. The radius of a reflected circle
Cν j will be denoted rν j , and let cν j be the center of such a circle. To make a distinction
between centers of reflected circles and reflections of the centers of the C j ∈ ∂�, set
s j = c j so that sν j represents the latter. It is clear that sν j �= cν j for ν ∈ σn( j), n > 0.

Repeated use of (2) shows that reflection through any circle Cν can be factored into
a sequence of reflections solely through the C j ∈ ∂�, which greatly simplifies the
numerical computation of these reflections. This factoring is expressed in the following
form of [8, Lemma 1].

Lemma 2 For ν = ν1ν2 · · · νn ∈ σn( j),

Cν j = ρν1(ρν2(· · · (ρνn (C j )) · · · )), and

sν j = ρν1(ρν2(· · · (ρνn (s j )) · · · )).

The proof of [8, Lemma 1] uses (2) and an induction argument, which will not be
given here, to show that, e.g., Cν j = ρν1(Cν2···νn j ). Repeated application of this to ν2
through νn gives the Lemma.
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Schwarz–Christoffel Maps for Multiply Connected Domains 311

Fig. 1 An example of reflected
circles to a level of |ν| = 3. The
point a213 = ρ213(ρ21(ρ2(a)))
is also shown
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Similarly, for any a ∈ �, let aν := ρν1(ρν2(· · · (ρνn (a)) · · · )). Then given, for
example, a point a213, one may reconstruct the original sequence of reflections, by the
use of (2),

a213 = ρ2(ρ1(ρ3(a))) = ρ2(ρ13(ρ1(a)))

= ρ213(ρ2(ρ1(a))) = ρ213(ρ21(ρ2(a))).

This is a reflected through C2, which is then reflected through C21, and the result
is then reflected through C213 = ρ21(C23). See Fig. 1.

Based on Lemma 2, a routine was developed in MATLAB which performs the
reflections of centers of boundary circles and points on these circles to some specified
level |ν| = N . Only reflections across the original circles are computed. For instance,
a123 = ρ123(a12) is computed as a123 = ρ1(ρ2(ρ3(a))). The code stores an expanding
array of integers, j ∈ {1, . . . ,m}, for each reflection such that ρ j is the most recent
reflection. For the next level of reflections, ρ j is then skipped, since ρ j (ρ j (a)) = a.
It should be noted that for a given |ν| = n > 0, the set σn has |σn| = m(m − 1)n−1

elements. This exponential increase in size is a principle difficulty in computing maps
in terms of these reflections.

We need the following definition and lemma for the statement of our convergence
results. The separation parameter of the region is

� := max
i, j;i �= j

ri + r j∣∣ci − c j
∣∣ < 1, 1 ≤ i, j ≤ m (3)

for the assembly of m mutually exterior circles that form the boundary of �, cf.
[14, p. 501]. Let C̃ j denote the circle with center c j and radius r j/�. Then geometri-
cally, 1/� is the smallest magnification of the m radii such that at least two C̃ j ’s just
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312 T. K. DeLillo et al.

Fig. 2 Map w = fzk, j (z) from the exterior of four disks to the interior of a convex curve through 0 with
three radial slits removed. The point zk, j in the z-plane (marked by ‘O’) is mapped to the origin 0 in the
w-plane and fzk, j (∞) = 1 marked by an ‘X’. The other circles are mapped to the radial slits. This map
was computed with the reflection algorithm with N = 3 levels of reflection

touch. The following inequality from [14, p. 505] then gives us an estimate of the rate
of decrease of the areas of the reflected circles.

Lemma 3

∑
ν∈σn+1

r2
ν ≤ �4n

m∑
j=1

r2
j . (4)

3 Finite Product Representation for the Derivative of the Map

We give a new version of (1) where the integrand is in terms of finite products of maps,
fzk, j (z) from the exterior circle domains to the interior of a curve through and star-like
with respect to the origin with radial slits removed; see Figs. 2 and 3. The final multiply
connected Schwarz–Christoffel (MCSC) formula will be a minor modification of the
original formula (1), where the inner infinite products are replaced by these radial slit
maps. The formula is

f (z) =
z∫ m∏

j=1

K j∏
k=1

[
fzk, j (ζ )

]βk, j dζ. (5)

Here fzk, j (z) is the map just described with fzk, j (zk, j ) = 0 and fzk, j (∞) = 1.
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Fig. 3 Another example with N = 5 levels of reflection. Note the star-likeness with respect to 0 of the
image region

If the domain satisfies the separation condition � < (m − 1)−1/4 from [6,8], then
we can represent fzk, j (z) explicitly as an infinite product,

fzk, j (z) :=
∞∏

n=0
ν∈σn( j)

(
z − zk,ν j

z − sν j

)
(6)

where zk,ν j and sν j are reflections of the prevertex zk, j and the center s j = c j ,
respectively, on the j th circle. For instance, for the k = 2 prevertex on circle j = 1
with m = 3

fz2,1(z) = (z − z2,1)(z − z2,21)(z − z2,31)(z − z2,121) · · ·
(z − s1)(z − s21)(z − s31)(z − s121) · · · . (7)

Note that these maps are not the maps to canonical radial slit domains given in [6].
For instance, the poles at the other centers sp, p �= j , and their reflections are missing
from the infinite product. Only s j for one fixed j is reflected.

Remark 1 In [9], we expressed the formula as

f ′(z) = A fa(z)
m∏

j=1

K j∏
k=1

[
fk, j (z)

]βk, j (8)
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where, for arbitrarily chosen a j ∈ C j , a j �= zk, j ,

fk, j (z) =
∞∏

n=0
ν∈σn( j)

(
z − zk,ν j

z − aν j

)
(9)

are maps to radially slit half-planes with fk, j (zk,ν j ) = 0 and fk, j (aν j ) = ∞, and

fa(z) :=
⎛
⎝ m∏

j=1

fa j (z)

⎞
⎠

2

with fa j (z) :=
∞∏

n=0
ν∈σn( j)

(
z − aν j

z − sν j

)
. (10)

Note that the fa j (z) are exactly the maps of the form fzk, j (z) with the arbitrarily
selected a j ’s replacing the prevertices, zk, j . While this factorization in terms of maps
to radially slit half planes has some theoretical and geometric appeal (see also [3]),
we will not discuss its numerical implementation here.

Finally, we note that forms above fit into the framework of [12] where the derivative
of the mapping function, f ′(z), is expressed as a product,

f ′(z) = A
∏

k

fk(z), (11)

of factors fk(z) that guarantee that f ′ has piecewise constant argument for the given
geometry. For instance, for the case of simply connected maps from the disk, fk(z) :=
(z − z j )

βk , −βkπ is the turning angle at prevertex zk, βk = αk −1, and
∑

k βk = −2.
In this case, the mapping function is

f (z) = A

z∫ ∏
k

(ζ − zk)
βk dζ + B, (12)

where a normalization condition, such as fixing an interior point and one boundary
point, gives a unique map. There are several variations in which other domains are
used, e.g., a rectangle or an infinite strip, [12, Chap. 4].

3.1 Properties of the Unbounded Map Factors from an Infinite Product
Representation

Let a j be a point on one of the boundary circles C j . In terms of reflections we may
write

fa j (z) =
∞∏

n=0
ν∈σn( j)

(
z − aν j

z − sν j

)
. (13)
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Schwarz–Christoffel Maps for Multiply Connected Domains 315

If a j = zk, j , then fa j is one of the factors of the unbounded MCSC map.
We can define a singularity function Sa j (z) for fa j as

Sa j (z) := f ′
a j
(z)

fa j (z)
= d

dz
log fa j (z) =

∞∑
n=0

ν∈σn( j)

(
1

z − aν j
− 1

z − sν j

)
. (14)

The proof of convergence of Sa j closely follows [7, Theorem 3.3] with the sums
over j = 1, . . . ,m eliminated. We will show that the sums truncated to N levels of
reflection,

Sa j ,N (z) =
N∑

n=0
ν∈σn( j)

(
1

z − aν j
− 1

z − sν j

)
, (15)

converge uniformly to Sa j (z) for z ∈ � as N → ∞, provided the circles satisfy
the separation condition, and so fa j (z) = exp(

∫
Sa j (z) dz). In the special case when

m = 2 there is no restrictive separation hypothesis since then � < (m − 1)−1/4 = 1
is equivalent to the fact that the two boundary components are disjoint.

We now prove the convergence of Sa j ,N (z) to Sa j (z) for sufficiently well-separated
circles.

Theorem 4 For connectivity m ≥ 2, Sa j ,N (z) converges to Sa j (z) uniformly on �
such that

|Sa j (z)− Sa j ,N (z)| = O
(
(�2

√
m − 1)N

)
(16)

for regions satisfying the separation condition

� <
1

(m − 1)1/4
. (17)

Proof For n = 0, 1, 2, . . . , we write

Aa j ,n(z) =
∑

ν∈σn( j)

(
1

z − aν j
− 1

z − sν j

)
=

∑
ν∈σn( j)

aν j − sν j

(z − aν j )(z − sν j )
(18)

and hence,

Sa j ,N (z) =
N∑

n=0

Aa j ,n(z). (19)
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Let

δ = δ� = inf
z∈� {|z − aν |, |z − sν | : ν ∈ σn, n = 1, 2, 3, . . .} . (20)

Clearly δ > 0 since points aν and sν lie inside the boundary circles of�. Note that the
number of terms in the Aa j ,n(z) sum is O((m − 1)n). This exponential increase in the
number of terms is the principal difficulty in establishing convergence. Recall that rν j

is the radius of circle Cν j . We bound Aa j ,n(z) for z ∈ � by using |aν j − sν j | < 2rν j ,
and the Cauchy–Schwarz inequality, as follows:

|Aa j ,n(z)| ≤
∑

ν∈σn( j)

|aν j − sν j |
|z − aν j ||z − sν j |

≤ 2

δ2

∑
ν∈σn(n)

rν j

≤ 2

δ2

⎛
⎝ ∑
ν∈σn( j)

r2
ν j

⎞
⎠

1/2 ⎛
⎝ ∑
ν∈σn( j)

1

⎞
⎠

1/2

= 2

δ2

⎛
⎝ ∑
ν∈σn( j)

r2
ν j

⎞
⎠

1/2

(m − 1)n/2

<
2

δ2�
2n

⎛
⎝ m∑

j=1

r2
j

⎞
⎠

1/2

(m − 1)n/2

≤ C�2n(m − 1)n/2

(21)

by Lemma 3 where δ = δ�. Therefore, by the Weierstrass M-test, the series converges
uniformly to Sa j (z) = limN→∞ Sa j ,N (z), if �2

√
m − 1 < 1. ��

Our boundary conditions for fa j are given by the following lemma.

Lemma 5 The function fa j satisfies

arg fa j (z) = const. for z ∈ C p, p �= j,

i.e., fa j maps the circles C p, p �= j to radial slits with respect to the origin, if and
only if

Re

{
(z − cp)

f ′
a j
(z)

fa j (z)

}
= 0 for z ∈ C p.
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Proof For z ∈ C p, we have z = cp + rpeiθ and since fa j (z) maps to radial slits, we
have arg f (z) =const. Therefore,

0 = ∂

∂θ
arg f (z) = ∂

∂θ
Im

{
log f (cp + rpeiθ )

}

= Im

{
ir peiθ f ′

f

}
= Re

{
rpeiθ f ′

f
(cp + rpeiθ )

}
.

��
The proof that fa j (z) defined by the (convergent) infinite product formula satisfies

the boundary conditions in Lemma 5 is nearly identical to [7, Theorem 3.4]. Again,
we will use the formula

Re

{
w

w − 1
+ w∗

w∗ − 1

}
= 1 (22)

where w and w∗ = 1/w are symmetric points with respect to the unit circle. Then the
following theorem gives the desired result. (Recall that sp = cp).

Theorem 6 If � < (m − 1)−1/4 then for z ∈ C p, p �= j ,

Re
{
(z − sp)Sa j ,N (z)

} = O((�2
√

m − 1)N )

and

Re
{
(z − sp)Sa j (z)

} = 0

Proof The idea of the proof is, for z ∈ C p, to use properties of the reflections in
Lemma 2 to group terms in Sa j ,N (z) related by reflection ρp through C p with z ∈ C p

as follows:

Sa j ,N (z) =
(

1

z − a j
+ 1

z − apj

)
−

(
1

z − s j
+ 1

z − spj

)
+ · · ·

+
(

1

z − aν j
+ 1

z − apν j

)
−

(
1

z − sν j
+ 1

z − spν j

)
+ · · · . (23)

Then, multiplying by z − sp, we have in more detail,

(z − sp)Sa j ,N (z) = (z − sp)/(a j − sp)

(z − sp)/(a j − sp)− 1
+ (z − sp)/(apj − sp)

(z − sp)/(apj − sp)− 1

− (z − sp)/(s j − sp)

(z − sp)/(s j − sp)− 1
+ (z − sp)/(spj − sp)

(z − sp)/(spj − sp)− 1
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+
N−1∑
n=1

∑
ν∈σn( j),
ν1 �=p

(
(z − sp)/(aν j − sp)

(z − sp)/(aν j − sp)− 1
+ (z − sp)/(apν j − sp)

(z − sp)/(apν j − sp)− 1

)
(24)

−
N−1∑
n=1

∑
ν∈σn( j)
ν1 �=p

(
(z − sp)/(sν j − sp)

(z − sp)/(sν j − sp)− 1
+ (z − sp)/(spν j − sp)

(z − sp)/(spν j − sp)− 1

)

+ (z − sp)
∑

ν∈σN ( j),
ν1 �=p

(
aν j − sν j

(z − aν j )(z − sν j )

)
.

We take the real part of the above expression and, using, for instance, w =
(z − sp)/(aν j − sp) and noting that w∗ = (z − sp)/(apν j − sp), (22) gives

Re

{
(z − sp)/(aν j − sp)

(z − sp)/(aν j − sp)− 1
+ (z − sp)/(apν j − sp)

(z − sp)/(apν j − sp)− 1

}

= Re

{
w

w − 1
+ w∗

w∗ − 1

}
= 1. (25)

Taking the real part of (24), we see that the first four lines sum to 0. The final terms,
all lying inside circles C j , j �= p, approximate the truncation error and are estimated
by Lemma 3. This gives our final result

Re
{
(z − sp)SN (z)

} = O

((
�2

√
m − 1

)N
)
. (26)

��
Next, we prove the boundary condition for z = s j + r j eiθ ∈ C j , that

∂ arg fa j (z)/∂θ = −1/2.

Theorem 7 If � < (m − 1)−1/4 then for z ∈ C j ,

Re
{
(z − s j )Sa j ,N (z)

} = −1/2 + O((�2
√

m − 1)N )

and

Re
{
(z − s j )Sa j (z)

} = −1/2.

Proof Multiplying Sa j ,N (z) by (z − s j ) and grouping terms by reflection across circle
C j gives

(z − s j )Sa j ,N (z) = (z − s j )

[
1

z − a j
− 1

z − s j

]
+ · · ·

+
(

z − s j

z − aν j
+ z − s j

z − a jν j

)
−

(
z − s j

z − sν j
+ z − s j

z − s jν j

)
+ · · ·
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= −1 + z − s j

z − a j

+
N−1∑
n=1

∑
ν∈σn( j)
ν1 �= j

[
(z − s j )/(aν j − s j )

(z − s j )/(aν j − s j )− 1
+ (z − s j )/(a jν j − s j )

(z − s j )/(a jν j )− 1

]

−
N−1∑
n=1

∑
ν∈σn( j)
ν1 �= j

[
(z − s j )/(sν j − s j )

(z − s j )/(sν j − s j )− 1
+ (z − s j )/(s jν j − s j )

(z − s j )/(s jν j )− 1

]

+(z − s j )
∑

ν∈σN ( j)
ν1 �= j

aν j − sν j

(z − aν j )(z − sν j )
.

Then using z = s j + r j eiθ and a j = s j + r j eiθ j , noticing the real part of the
first sum cancels with the real part of the second sum as in the previous proof, and
bounding the last sum of the equation as before, we get

Re
{
(z − s j )Sa j ,N (z)

} = −1 + Re

{
eiθ

eiθ − eiθ j

}
+ O

((
�2

√
m − 1

)N
)

= −1 + Re

{
ei(θ−θ j )/2

ei(θ−θ j )/2 − e−i(θ−θ j )/2

}
+ O

((
�2

√
m − 1

)N
)

= −1 + Re

{
1

2
− i

2
cot

θ − θ j

2

}
+ O

((
�2

√
m − 1

)N
)

= −1

2
+ O

((
�2

√
m − 1

)N
)
.

��

3.2 Boundary Value Problem for the Finite Product Representation

The results in the previous section show that the infinite product representations for
the fa j (z)’s are analytic functions in the circle domain satisfying certain boundary
conditions and a condition at infinity. We conjecture that these conditions, in general,
define a conformal map fa j (z) to star-like domains with radial slits for arbitrary
circle domains which need not satisfy the separation condition, � < (m − 1)−1/4, as
illustrated in our computations.

Conjecture 1 If fa j (a j ) = 0, fa j (∞) = 1, with the boundary conditions

1. arg fa j (z) = const. for z ∈ C p, p �= j and
2. ∂ arg fa j (z)/∂θ = −1/2 for z = s j + r j eiθ ∈ C j ,

then fa j (z) is a uniquely determined conformal map from the circle domain to the
interior of a domain bounded by a curve � j = fa j (C j ) through the origin and
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star-like with respect to the origin and by interior radial slits �p = fa j (C p),
p �= j .

In the next section, these maps will be computed using Laurent series approxima-
tions. Note that the singularity functions Sa j (z) = f ′

a j
(z)/ fa j (z) are solutions to a

Riemann–Hilbert problem for the multiply connected circle domains. Recent results
on the theory of such problems should be applicable, but we will not discuss this here;
see, e.g. [16].

Using the maps fzk, j (z), a general formula for the multiply connected Schwarz–
Christoffel map involving only finite products and not requiring the separation condi-
tion, can be written as

f (z) = A

z∫ m∏
j=1

K j∏
k=1

[
fzk, j (ζ )

]βk, j dζ + B.

Note that

S(z) := f ′′(z)/ f ′(z) =
m∑

j=1

K j∑
k=1

βk, j Szk, j (z). (27)

Then since

(
−1

2

) K j∑
k=1

βk, j = −1, (28)

S(z) will satisfy the boundary conditions from [8],

Re
{
(z − c j )S(z)

}
z∈C j

= −1. (29)

Example 1 The Joukowski map f (z) = z + 1/z provides a simple example of the
form of our SC formula for the simply connected case. In this case, the prevertices are
z1 = 1 and z2 = −1, β1 = β2 = 1, and we may write

f ′(z) = 1 − 1

z2 = z2 − 1

z2 = z − 1

z

z + 1

z
= f1(z) f−1(z). (30)

The boundary conditions on z = eiθ are

Re

{
z

f ′±1(z)

f±1(z)

}
= Re

{
± 1

z − (±1)

}
= −1

2
. (31)

A conformal map of the exterior of the unit disk to the exterior of a bounded polygon
provides a simple example.
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3.3 Computation of the Unbounded Map Factors

Following the ideas presented in [4,7,9,13,18], we seek a series representation of fa j

since, as will be shown below, it is possible to state the boundary conditions linearly
in terms of the coefficients of the series. We begin by writing the function in the form

fa j (z) = z − a j

z − s j
eg(z), (32)

where g is analytic in the domain and g(z) → 0 as z → ∞. Then fa j (a j ) = 0 and
fa j (∞) = 1, as required. The function g is given as the sum of the Laurent series
expansions on the exterior of each boundary circle,

g(z) =
m∑

p=1

∞∑
�=1

d�,pr�p
(z − sp)�

. (33)

Since Im
{
log fa j

} = arg fa j , the boundary conditions given in Lemma 5 and
Theorem 7 above are now

Im
{
log fa j

} ≡ const., for all z ∈ C p, p �= j (34)

and

∂

∂θ
Im

{
log fa j

} = −1

2
, for all z ∈ C j . (35)

Note for z = s j + r j eiθ ,

∂

∂θ
Im

{
log fa j (z)

} = Im

{
ir j e

iθ
f ′
a j
(z)

fa j (z)

}
= Re

{
(z − s j )

f ′
a j
(z)

fa j (z)

}
(36)

where

f ′
a j
(z)

fa j (z)
= d

dz
log fa j (z) = 1

z − a j
− 1

z − s j
+ g′(z) (37)

which gives

Re

{
(z − s j )

f ′
a j
(z)

fa j (z)

}
= Re

{
z − s j

z − a j
− 1 + (z − s j )g

′(z)
}

= −1

2
. (38)

By the calculation used in the proof of Theorem 7 we know that

Re

{
z − s j

z − a j

}
= 1

2
. (39)
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The boundary conditions may thus be restated in terms of g by

Im{g(z)} = const.− arg
z−a j
z−s j

, for all z ∈ C p, p �= j; (40)

Re
{
(z − s j )g′(z)

} = 0, for all z ∈ C j . (41)

The coefficients d�,p of g are found by solving a linear system of equations based
on these conditions.

For computation we discretize by truncating the series in � for g after N terms, and
choose M points z on each boundary circle. Let x = [d�,p] be the (m N × 1) column
vector of coefficients. Define for p = 1, . . . ,m the matrices

Fp = [
r�p(z − sp)

−� ]
M×m N

for z ∈ C p, p �= j. (42)

Based on

g′(z) ≈
m∑

p=1

N∑
�=1

−�d�,pr�p
(z − sp)�+1 (43)

define

G = [−�(z − s j )r�p(z − sp)
−�−1) ]

M×m N
for z ∈ C j . (44)

With Fp = FRp + i FIp , G = G R + iG I , and x = xR + i xI a calculation shows

Im{g(z)} ≈ FIp xR + FRp xI on any C p, p �= j (45)

and

Re
{
(z − s j )g

′(z)
} ≈ G R xR − G I xI on C j . (46)

The values of Im( fa j ) may not be known in advance, but the difference of Im( fa j )

for any pair of points on a circle C p, p �= j , is zero. Then define

P =

⎡
⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦

M−1×M

(47)

so that for z ∈ C p we have

P
[

FIp FRp

] [ xR

xI

]
= −P

[
arg

z−a j
z−s j

]
M×1

(48)
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by the boundary condition (40). By the boundary condition (41) it is also the case that

[
G R −G I

] [ xR

xI

]
= [

0
]
. (49)

For the sake of exposition suppose j /∈ {1,m}. Define the block matrices

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FI1
...

FI j−1

G R

FI j+1
...

FIm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m M×m N

and B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR1
...

FR j−1

−G I

FR j+1
...

FRm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m M×m N

(50)

and the difference matrix

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

P
. . .

I
. . .

P

⎤
⎥⎥⎥⎥⎥⎥⎦

m(M−1)+1×m M

(51)

where the identity matrix occupies the j th block-row. A least squares solution to the
system

E
[

B1 B2
] [ xR

xI

]
= −E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

arg
z−a j
z−s j

...

0
...

arg
z−a j
z−s j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m M×1

(52)

using the MATLAB backslash operator gives the coefficients of g.
To choose the number of collocation points M , consider that for the system given

by Eq. (52) to be square a calculation shows that M must satisfy

M = 2m N + m − 1

m
.

The ceiling function could be employed to allow for any truncation level N without
regard to m, which would make the system overdetermined in the case M is not an
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integer. For consistency we just require that the system always be overdetermined by
the inequality

M >
2m N + m − 1

m
,

where

M = 2N + 1 = 2m N + m

m

satisfies this condition.

4 Solution of the Parameter Problem

We will briefly recall some details of the numerical computation of Schwarz–
Christoffel maps for unbounded multiply connected domains reported in [10]. Several
examples of both bounded and unbounded domains are computed in [9,10] using the
reflection method.

In order to compute of the MCSC maps for given polygonal boundaries, we must
solve the so-called parameter problem of finding the prevertices and the centers and
radii of the circles. We do this by solving a non-linear set of equations, described below,
that guarantee that the side lengths of the polygons and their locations are correct. Our
method proves to be extremely robust and rarely fails to converge. A more complete
discussion of the computational aspects and behavior of this setup is given in [10].

We now summarize some details for the unbounded maps from [10]. The prevertices
on C j are parametrized by θk, j , where zk, j = c j + r j eiθk, j for k = 1, . . . , K j , and
constrained to lie in order,

θ1, j < θ2, j < · · · < θK j , j . (53)

The unknown c j ’s, r j ’s, and θk, j ’s amount to a total of K1 + K2 +· · ·+ Km +3m real
parameters. We approximate f ′(z) by p(z) using Laurent series as described above.
In the unbounded case, the map can be normalized as

f (z) = Az + B + O(1/z), z → ∞,

by fixing one boundary point, f (1) = w1,1 and C1 as the unit circle. Letting

A = w2,1 − w1,1∫ z2,1
z1,1

p(z)dz
,

we have

f (z) = A

z∫

z1,1

p(ζ ) dζ + B,
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Fig. 4 Geometry used for Fig. 5
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−6

−4

−2

0

2

with f (z1,1) = B = w1,1. We require that c1 = 0 and r1 = 1, and fixing f (1) = w1,1
is equivalent to setting θ1,1 = 0. This amounts to fixing four of the real parameters,
so that we have

K1 + · · · + Km + 3m − 4

unknowns parameters to determine.
The remaining parameters are determined from the geometry of the polygonal

domain. First, we have the side-length conditions,

| f (zk+1, j )− f (zk, j )| = |wk+1, j − wk, j |,

for j = 1, . . . ,m and k = 1, . . . , K j , where here and below

f (zk+1, j )− f (zk, j ) = A

zk+1, j∫

zk, j

p(ζ ) dζ

is calculated by numerical integration. Compound Gauss–Jacobi integration as
described in [12] (which includes the use of the “one-half rule”1) is used to handle
the singularities in the Schwarz–Christoffel integrals. (We borrow code to calculate
the nodes and weights for the quadrature from SC Toolbox [11], an existing package
for computing Schwarz–Christoffel maps for various simply and doubly connected
geometries).

The side-length conditions give K1 + · · · + Km real equations, but the calculation
of A removes one from this count. The final side-length conditions then add up to
K1 + · · · + Km − 3 real equations. The positions of �2 through �m with respect to �1
are fixed by requiring that

f (z1, j )− f (z1,1) = w1, j − w1,1

1 “No singularity may lie closer to an integration sub-interval than one-half the length of that subinterval.”
[12].
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Fig. 5 Apparent (vertex) accuracy Eacc as a function of the number of quadrature points ngj
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Fig. 6 Simple exterior map with m = 3. See Example 2. In this example the separation condition is
satisfied, since � ≈ 0.4078 < (m − 1)−1/4 ≈ 0.8409

for j = 2, . . . ,m. These conditions give 2(m − 1) real equations. Finally, the orien-
tations of �2 through �m are given by the m real equations,

arg( f (z2, j )− f (z1, j )) = arg(w2, j − w1, j )

for j = 2, . . . ,m. (The orientation of �1 is determined by the calculation of A).
Therefore, the side-length, position, and orientation conditions give

K1 + · · · + Km + 3m − 4
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Fig. 7 Comparison of convergence of the solution to the parameter problem for both methods for Example 2
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Fig. 8 Comparison of computation time to find the solution of the parameter problem for Example 2. Each
method was started with the same initial guess

real equations. This is exactly what is needed. Other selections of conditions are
possible and useful. In [10], the advantages of varying the numberings of the polygons
and vertices and the locations of the integration paths between circles is discussed.
We will not discuss these options here. However, we note that it is important that the
resulting equations give a complete and independent set of conditions.

The constraints (53) on the θk, j ’s are difficult to enforce. As in [10], we there-
fore use a transformation to unconstrained variables similar to [12, p. 25]. Let
φk, j := θk+1, j − θk, j , k = 1, . . . , K j . Then the unconstrained variables are
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Fig. 9 Comparison of apparent accuracy Eacc for Example 2
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Fig. 10 The map fz1,1 for Example 2; i.e., the MCSC factor with k = 1, j = 1

ψk, j := ln
φk+1, j

φ1, j
for k = 1, . . . , K j − 1. (54)

Given θ1, j , the transformation (54) can be inverted by

θk, j = θ1, j + 2π
1 + ∑k−2

i=1 eψi, j

1 + ∑K j −1
i=1 eψi, j

(55)

for k = 2, . . . , K j . Our unconstrained parameters are, therefore,

θ1, j , ψ1, j , ψ2, j , . . . , ψK j −1, j ,
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Fig. 11 Example 3 with m = 4 and higher vertex count
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Fig. 12 Convergence comparison for the solution to the parameter problem for the 4-connected domain in
Example 3. Note the slow convergence of the reflection method, since in this example we have� ≈ 0.8164
with (m − 1)−1/4 ≈ 0.7598

for j = 1, . . . ,m. (Recall that θ1,1 = 0). The parameters are placed in a real vector X
of length n := K1 + · · · + Km + 3m − 4 and the non-linear equations form an n × n
system F(X) = 0, where F(X) is the objective function for our non-linear solver. As
in [6,10], a homotopy search method [1, Program 3] is used here and found to be very
effective. Convergence is almost always achieved even with a deliberately poor initial
guess.

An estimate of the accuracy of the map, inspired by [11] is given. We attempt to
calculate the images of the prevertices from the solution process, and then compare
this result with known vertex values. The largest deviation from known values is then
called the accuracy error, Eacc, or apparent (vertex) accuracy.
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Fig. 13 Comparison of computation times for Example 3
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Fig. 14 Comparison of apparent accuracy Eacc for Example 3

Apparent accuracy is calculated by computing

Eacc = max
j,k

∣∣∣∣∣∣∣

⎛
⎜⎝A

zk+1, j∫

zk, j

p(z) dz + wk, j

⎞
⎟⎠ − wk+1, j

∣∣∣∣∣∣∣
, (56)

where the integration path should be through the domain, away from the boundaries. In
the simply connected circle map a similar calculation is done [11], but the integration
path is a line from one prevertex to the origin, and then from the origin to the other
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Fig. 15 For Example 4 with m = 3, the circles in the domain are very close to touching with� ≈ 0.9474 >
(m − 1)−1/4 ≈ 0.8409
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Fig. 16 Convergence for Example 4

prevertex. In the multiply connected case there is no convenient single point through
which to integrate each of these (one might integrate through a singularity).

A simple solution to this consists of expanding the radius of each circle by adding
1/2 the distance to the closest circle. We then integrate out radially from a prevertex on
the boundary to the associated point on the expanded circle, integrate along the arc of
the expanded circle to the point associated with the next prevertex, and then radially
inward from the associated point, to the prevertex on the boundary. In other words
let c j , r j , zk, j and zk+1, j be the center and radius and two prevertices of a circle in
question with θk, j and θk+1, j the angles of the prevertices. Set

r̃ j = r j + 1

2
min
p �= j

{|c j − cp| − r j − rp} for j, p ∈ {1, . . . .m}. (57)
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Fig. 17 Time comparison for Example 4

50 75 100 125 150 175 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

N = series truncation level

A
pp

ar
en

t a
cc

ur
ac

y

6 7 8 9 10 11 12

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

N = number of reflections
Apparent accuracy comparison

Finite product
Reflections

Fig. 18 Comparison of apparent accuracy Eacc for Example 4

Now set z̃k, j = c j + r̃ j eiθk, j and z̃k+1, j = c j + r̃ j eiθk+1, j . We compute

zk+1, j∫

zk, j

p(z) dz =
⎛
⎜⎝

z̃k, j∫

zk, j

p(z) dz +
z̃k+1, j∫

z̃k, j

p(z) dz +
zk+1, j∫

z̃k+1, j

p(z) dz

⎞
⎟⎠ (58)

where on the right-hand side of the equation, the first and last integrals are along radial
lines, and the middle integral is along the arc of the expanded circle.

Figure 5 gives the relationship between Eacc and ngj , the number of quadrature
points in each compound integration interval, for the geometry shown in Fig. 4. The
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Fig. 19 The MCSC factor map fz1,1 for Example 4
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Fig. 20 The MCSC factor map fz6,1 for Example 4

re-entrant corners on the polygon were chosen to create singularities to ensure the
one-half rule is necessary for accurate computation; the slits were chosen to ensure
� << (m − 1)−1/4.

5 Numerical Examples

Here we give numerical examples of the finite product computations using least
squares, as well as comparisons with the reflection method. The examples below
use these representations to evaluate the derivative of the MCSC transformation in
solving the parameter problem as outlined in [9,10].

Example 2 Our first example is shown in Fig. 6. It is clear from Figs. 7, 8, and 9 that
the finite product method performs much better than the reflection method; one gets
better convergence and accuracy for less computation time. The vectors X (N ) are the
MCSC parameters after the solution process has finished at N levels of reflection or a
series truncation level of N terms appropriately. We compare ‖X (N )− X (N − 1)‖∞
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Fig. 21 Example 5 with high connectivity, m = 10. This took around 5 h to solve the parameter problem
with the reflection method, and around 5 min using the finite product method

in the case of reflections and ‖X (N )− X (N − 3)‖∞ for the series. Figure 10 shows
one of the slit maps in the finite product representation.

Example 3 The next example, see Figures 11, 12, 13, 14, is only slightly more compli-
cated with four unbounded polygons (m = 4), but shows a more extreme example of
the difference in time and accuracy of the two methods. This is due to the higher con-
nectivity and higher vertex count. Note that for this example the separation condition
is not satisfied, since � ≈ 0.8164 > (m − 1)−1/4 ≈ 0.7598.

Example 4 This example compares performance of the two methods in a domain
with close to touching circles. See Fig. 15. Figures 16, 17, and 18 show the finite
product method achieves better accuracy for approximately the same computation
time. Even with� ≈ 0.9474 > (m − 1)−1/4 ≈ 0.8409, Figs. 19 and 20 show that, as
in the reflection case, the separation condition is not necessary for convergence of the
infinite series for the fzk, j ’s.

Example 5 The last example involves high connectivity, m = 10; see Fig. 21. On the
same hardware, the reflection method took just a little over 5 h to solve the parameter
problem, while the finite product method took around 5 min to solve the same problem.

5.1 Polygonal Domain Vertices

In the interest of reproducibility, we list the vertices of the polygonal domains used in
the above examples. Each polygonal domain is listed as a MATLAB cell array with
vectors of vertices for each polygon as entries.
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Example 2 {[0.56 + 0.64i, −0.38 + 0.85i, −0.71 − 0.64i, 0.71 − 0.54i], [2.70 +
0.81i, 3.61+1.57i, 2.31+1.72i], [2.64−0.79i, 2.41−1.81i, 3.81−
1.68i, 3.73 − 0.94i]}

Example 3 {[2.52 − 0.007i, 1.19 + 1.89i, −1.17 + 1.44i, −2.46 − 1.17i, 0.57 −
1.93i], [2.74−1.26i, 1.41−2.35i, 2.94−4.25i, 4.94−3.24i], [3.57+
0.80i, 5.01 + 0.2i, 7.12 + 1.41i, 5.5 + 1.45i, 4.49 + 1.79i][2.92 +
1.66i, 3.72 + 3.39i, 3.00 + 4.88i, 2.14 + 3.84i, 2.85 + 3.18i]}

Example 4 {[[−4, −4 + 1i, −4, 4, 4 + 1i, 4], [−3 + 0.7i, −1 + 0.7i], [1 +
0.6i, 3 + 0.6i]}

Example 5 {[0 − 1 + 1i − 1 − 1i], [−.17 − 1.8i, −.7 − 2.2i, −.44 − 2.7i, .032 −
2.3i], [.21−2.8i, −.2−3.8i, .53−4.2i, .5−3.2i], [.68−1.2i, .5−
1.7i, .97 − 2.6i, 1.3 − 2.4i, 1.3 − 1.6i], [.62 − .48i, 1.5 − .8i, 1.5 −
.19i], [2.2 + .48i, 2 − .4i, 2.9 − .015i], [.5 + 1.1i, 1.1 + .75i, .62 +
.42i, 1.8 + .83i, 1.6 + 1.3i], [.3 + 1.7i, 1 + 2i, 1 + 2.6i, .59 +
2.4i], [.41 + 3.1i, .94 + 3.5i, −.29 + 3.6i], [−.52 + 1.7i, −.41 +
2.8i, −1.1 + 2.5i, −1.5 + 2i, −.93 + 2.2i]}
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